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ABSTRACT

X-ray mammography is the most reliable method available at present for the detection of breast cancer in screening
programs. Unfortunately, it still misses many cancers, particularly in the radiographically dense breast more common in
younger populations where the benefits of mammography screening are more controversial. Digital mammography holds
the promise of improved specificity and sensitivity for the detection of small cancers. However, superior image quality can
only be achieved if these digital systems are optimally designed to extract all information possible from the x-ray beam.

The metric most generally accepted to describe signal and noise performance of detectors is the detective quantum
efficiency (DQE), and theoretical methods for predicting the DQE are essential for the optimal design of new systems.
Current methods using "cascaded-systems" analyses are simplistic and do not agree very well with measurements. In this
research, we introduced the idea of "parallel cascades" as a means of developing comprehensive models of x-ray detectors
that accurately describe the DQE of many x-ray systems. We discovered a mathematical description of the required cross-
spectral noise-power density and showed that this approach gives an accurate estimate of the DQE based on design
parameters. The results of this research are now used routines in the design and assessment of new x-ray systems by
scientists and engineers in both academic and industrial laboratories around the world.
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Introduction

X-ray imaging is the mainstay of diagnostic radiology. Although x-ray.technologies have been under
development for over 100 years, their cost, use and potential for diagnosis continue to accelerate. Due to
the health risks associated with exposure to radiation and the risks from inconclusive or misleading
diagnoses, technical excellence in medical imaging systems is critical to high-quality medical care.

In radiology, image quality is a balance between system performance and patient radiation dose. This
balance is particularly important for difficult diagnostic tasks such as mammographic screening, where
large numbers of patients are exposed to radiation and high-quality images are essential to enable early
detection when the disease is still in situ or minimally invasive.(Tabar et al., 1995;Hendrick et al.,
1997;Heine and Malhotra, 2002a;Heine and Malhotra, 2002b) While film-screen mammography has
been the most reliable method available for the detection of breast cancer in screening programs in the
past,(Zhou and Gordon, 1989;Hurley and Kaldor, 1992) new digital technologies under development are
expected to have improved sensitivity and specificity.(Baines et al., 1990;Yaffe, 1992;Feig and Yaffe,
1998) This is particularly important for examinations of the radiographically-dense breast,(Boyd et al.,
1998;Heine and Malhotra, 2002a;Heine and Malhotra, 2002b) found more often in younger populations
where the benefits of screening mammography remain controversial.(Kerlikowske et al.,
1996a;Kerlikowske et al., 1996b)

The scientific community has generally accepted the modulation transfer function (MTF) and detective
quantum efficiency (DQE) as the most important metrics describing system imaging performance.(Metz
et al., 1995) The MTF describes spatial resolution (as a function of spatial frequency) - essential for
imaging small detail such as breast microcalcifications. The DQE describes the ability of a system to
capture the signal-to-noise ratio available in a radiation beam and is a fundamental measure of system
"radiation dose efficiency."

Theoretical models of the DQE are essential for the optimal design of high-quality imaging systems. An
approach called "cascaded-systems analysis" has gained recent popularity as a method of understanding
the general behavior of the DQE of many existing detectors. However, this approach has been too
simplistic to be of much practical value for developing comprehensive models of the DQE.

The overall goal of this research was to develop the theoretical basis of a sophisticated cascaded-systems
method, and to evaluate this method by generating comprehensive DQE models of real systems and
comparing these with Monte Carlo and experimental results. These models are then used to develop an
understanding of the physical factors that limit performance - factors that must be addressed in the
optimal design of new "next-generation" detectors.

Body

This research has lead directly to the development and use of cascaded-systems analysis as a generalized
method for developing comprehensive models of signal and noise transfer in x-ray imaging systems. It



5

has made possible the development of cascaded models of the DQE that accurately describe system
performance and can be validated directly by experimental measurements and Monte Carlo calculations.

Key Research Accomplishments

Our primary accomplishment was development of what we call "parallel cascades." This is a method of
reducing complex physical processes involved in the generation of an x-ray image into a number of
simpler processes. These simple processes have well defined (and understood) signal and noise-transfer
properties, and can be combined arbitrarily to represent the actual complex processes. The concepts that
make parallel cascades possible were developed in the first year of the grant. In the second and third
years, these concepts were further refined, validated and published. We used this approach to study a
CsI-based flat panel detector and determine what physical properties were responsible for limiting the
performance of this detector, and therefore what parameters must be addressed before improvements in
detector performance are possible.

Details of our scientific contributions are described in the attached publications. In this section, each
accomplishment is summarized in terms of the specific tasks and goals of the grant.

Year I:
I-1) Develop expertise in statistical point-process theory
1-2) Develop expertise in moment generating functions theory
1-3) Develop general expression for generalized cross-spectral density term required for parallel cascades
1-4) Design and construct x-ray system for production of mono-energetic x rays using a secondary target

Our primary accomplishment was to develop the concept of the cross spectral density of amplified point
processes. This was the missing link preventing use of the cascaded-systems approach for high-accuracy,
comprehensive models of the DQE in the past, and was completed using the random point-process
approach. A manuscript was submitted for publication in Medical Physics (Publication 1: Parallel
cascades: New ways to describe noise transfer in medical imaging systems). The final result of this work
can be expressed as a single equation: the general expression for the cross covariance of amplified point
processes and an expression for the cross spectral density for wide-sense stationary conditions is given by
Eq. 81 in Publication 1. The fact that a highly sophisticated theoretical development reduces to this
simple and easy-to-apply result is likely the reason that parallel cascades are now widely used by
scientists and engineers. It means that the mathematical sophistication is "concealed" from the user,
making the use of cascaded DQE models more accessible to a wider audience.

These results extend the generalized transfer-theory approach to include the description of more complex
image-forming processes involving parallel cascades of quantum amplification processes. This parallel-
cascade approach has been used to develop a theoretical expression for noise-power transfer in a simple
radiographic screen that includes the effect of characteristic x-ray reabsorption. The result confirms
earlier work by Metz and Vyborny(Metz and Vyborny, 1983) who showed that reabsorption increases
image noise and decreases the detective quantum efficiency (DQE) at some spatial frequencies. Use of
the transfer-theory approach facilitates a straightforward generalization to many new digital imaging
systems including conventional angiographic and active-matrix flat-panel systems.



6

Task 1-4 was the development of a mono-energetic x-ray source based on a secondary lanthanum target
for experimental validation of the parallel cascades concept. Figure 1 shows a photograph of the mono-
energetic source and Fig. 2 shows a schematic drawing of the design.

Year II:
11-1) Identify other transfer relationships as described in proposal
11-2) Develop expressions for signal and noise transfer through each relationship
11-3) Perform Monte Carlo verification study of parallel cascade results
11-4) Perform experiments using mono-energetic x rays to confirm NPS and DQE degradation due to
reabsorption of K x rays in radiograhic screen using CCD camera (equipment
11-5) Write paper describing generalized cross-spectral density term and comparison of resulting
theoretical prediction of NPS and DQE degradation due to reabsorption with mono-energetic experiment

X ray images are generated when an x-ray beam deposits energy into the detector, primarily by
photo-electric and Compton interactions. Image noise is directly related to the number of interacting
x-ray quanta and to details of how the energy is absorbed. The most important outcome from our work in
year II was to recognize that both photo-electric and Compton interactions, should be - and can be -
represented as linear and shift-invariant random point processes. This was important because it meant
these fundamental processes can be described as Fourier-based transfer functions in terms of parallel
cascaded processes.

This Fourier representation of x-ray physics was a critical step towards a comprehensive theoretical
framework for optimizing detector design and exposure techniques on the MTF and DQE. It was made
possible by our development of parallel cascades in year I. In year II we extended this approach to
represent Compton scatter (Publication 2: Compton scatter infrequency space: a theoretical study). It is
limited at present to "thin" detectors where multiple scatter can be ignored, but is applicable to most
detectors used for mammography.

A number of other key transfer relationships were identified and used to study the transfer of signal and

Figure 1. Photograph of mono-energetic x-ray Figure 2. Schematic illustration of mono-
source with top removed. energetic x-ray source.
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noise in a CsI-based flat panel detector (Publication 3: Cascaded models and the DQE offlat-panel
imagers: noise aliasing, secondary quantum noise and reabsorption). In addition, this investigator was

invited to contribute a chapter on the use of cascaded-systems in detector design for The Handbook of
Medical Imaging published by the Society for Optical Engineeringc(unningham 2o0o 6 8

1
7 id) (Publication 4) and

now teaches an annual course on cascaded systems in medical imaging for this society based on this
chapter.

Year III:
1) Perform Monte Carlo verification study of all digital-system relationships
2) Write paper describing all transfer relationships

The parallel cascaded-systems approach has now been validated by both Monte Carlo and experimental
measurements of the DQE on several systems, both by this investigator and others. In year III and
subsequent years several more publications have been completed, either fully or partially funded by this
award (Publications 5-11: Aframeworkfor noise-power spectrum analysis of multidimensional images,
Fundamental limitations imposed by x-ray interactions on the modulation transfer function of existing x-
ray detectors: a Monte Carlo study, Can a Fourier-based cascaded-systems analysis describe noise in

complex shift-variant spatially sampled detectors?, Validation of complex cascaded models of medical
imaging systems by Monte Carlo, Penalty on the detective quantum efficiency from off-axis incident x
rays, Computational engine for development of complex cascaded models of signal and noise in x-ray

imaging systems, and Signal and noise transfer properties ofphotoelectric interactions in diagnostic-
imaging detectors).

Reportable Outcomes

Publications

1. J. Yao and I.A. Cunningham. Parallel cascades: New ways to describe noise transfer in medical
imaging systems, Medical Physics 28(10): 2020-38 (2001).

2. J. Yao and I.A. Cunningham. "Compton scatter in frequency space: a theoretical study" in
Medical Imaging 2002: Physics of Medical Imaging, L. Antonuk and M. Yaffe Editors, Proc.
SPIE 4682: 479-490 (2002).

3. I.A. Cunningham. "Cascaded models and the DQE of flat-penel imagers: noise aliasing,
secondary quantum noise and reabsorption" in Medical Imaging 2002: Physics of Medical
Imaging, L. Antonuk and M. Yaffe Editors, Proc. SPIE 4682: 61-72 (2002).

4. I.A. Cunningham. Applied linear-systems theory, Chapter 2, Handbook of Medical Imaging, Vol
1. Physics and Psychophysics, Eds. J. Beutel, H.L. Kundel and R.L. Van Metter, pp. 79-159 (The
International Society for Optical Engineering, Bellingham, Washington, 2000).
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5. J.H. Siewerdsen, I.A. Cunningham and D.A. Jaffray. A framework for noise-power spectrum
analysis of multidimensional images, Medical Physics 29(11): 2655-71 (2002). This paper was
awarded the 2003 COMP Sylvia Fedoruk Prize in Medical Physics (best paper of the year).

6. G. Hajdok and I.A. Cunningham, "Fundamental limitations imposed by x-ray interactions on the
modulation transfer function of existing x-ray detectors: a Monte Carlo study" in Medical
Imaging 2003: Physics of Medical Imaging, M.J. Yaffe and L. Antonuk Editors, Proc. SPIE 5030
(2003).

7. I.A. Cunningham, M. Sattarivand, G. Hajdok and J. Yao, "Can a Fourier-based cascaded-systems
analysis describe noise in complex shift-variant spatially sampled detectors?," Medical Imaging
2004: Physics of Medical Imaging, Eds Yaffe and Flynn, Proc SPIE 5368 79-88 (2004).

8. M. Sattarivand and I.A. Cunningham, "Validation of complex cascaded models of medical
imaging systems by Monte Carlo," Medical Imaging 2004: Physics of Medical Imaging, Eds
Yaffe and Flynn, Proc SPIE 5368 98-108 (2004).

9. G. Hajdok and I.A. Cunningham, "Penalty on the detective quantum efficiency from off-axis
incident x rays," Medical Imaging 2004: Physics of Medical Imaging, Eds Yaffe and Flynn, Proc
SPIE 5368 109-118 (2004).

10. M. Satarivand, G. Hajdok and I.A. Cunningham, Computational engine for development of
complex cascaded models of signal and noise in x-ray imaging systems, IEEE Transactions on
Medical Imaging, 24: 211-22 (2005).

11. J. Yao, G. Hajdok and I.A. Cunningham, Signal and noise transfer properties of photoelectric
interactions in diagnostic-imaging detectors, Medical Physics (2005) [accepted].

Invited Presentations
The following presentations were based in whole or in part on research completed for this research
award.
1. X-ray detector performance: principles and measurements using a linear systems approach, SPIE

Course, San Diego, February 12 2005.
2. X-ray detector performance: principles and measurements using a linear systems approach, SPIE

Course, San Diego, February 14 2004.
3. Understanding radiologic image quality: A linear-systems approach, SPIE Course, San Diego,

February 2002.
4. Fundamental Limits of Image Quality in Diagnostic and Therapeutic Imaging Systems, Great

Lakes Chapter of the AAPM, Michigan, January 19 2002.
5. Digital Image Quality, Invited address to the ACMP annual symposium "Digital Radiography:

Clinical State of the Art", Hershey, PA, June 4-5 2001.
6. Understanding radiologic image quality: A linear-systems approach, SPIE Short Course, San

Diego, February 2001.
7. The DQE of fluoroscopic systems: Does the ideal observer have infinite patience? William

Beaumont Hospital, Department of Radiation Oncology, November 20, 2000.
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8. The detective quantum efficiency of fluoroscopic systems: A spatial-temporal approach.
University of Michigan Medical Center, September 2000.

9. Understanding radiologic image quality: From basic concepts to a practical tool-kit for scientists
and engineers, American Association of Physicists in Medicine, Chicago, July 2000.

Abstracts and Presentations

10. I.A. Cunningham, M. Sattarivand, !G. Hajdok and !J. Yao, "Can a Fourier-based
cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,"
Medical Imaging 2004: Physics of Medical Imaging, Eds Yaffe and Flynn, Proc SPIE 5368 2004.

11. M. Sattarivand and I.A. Cunningham, "Validation of complex cascaded models of medical
imaging systems by Monte Carlo," Medical Imaging 2004: Physics of Medical Imaging, Eds
Yaffe and Flynn, Proc SPIE 5368 2004.

12. G. Hajdok and I.A. Cunningham, "Penalty on the detective quantum efficiency from off-axis
incident x-rays," Medical Imaging 2004: Physics of Medical Imaging, Eds Yaffe and Flynn, Proc
SPIE 5368 2004.

13. M. Sattarivand and I.A. Cunningham, "Development of a graphical programming environment
for the design of cascaded quantum imaging systems," COMP 2003, Edmonton.

14. G. Hajdok and L.A. Cunningham, "Fundamental spatial resolution limits in existing diagnostic
x-ray detectors," COMP 2003, Edmonton.

15. G. Hajdok and I.A. Cunningham, "Fundamental limitations imposed by x-ray interactions on the
modulation transfer function of existing x-ray detectors: a Monte Carlo study" Medical Imaging
2003: Physics of Medical Imaging, San Diego SPIE 5030: Feb. 2003.

16. I.A. Cunningham, "New Transfer Theory Relationships for Signal and Noise Analysis of X-Ray
Detectors", U.S. Army, Era of Hope Breasth Cancer Research Meeting, Orlando, Florida,
September 25-28, 2002.

17. J. Yao and I.A. Cunningham, "Model of Compton Scatter on Signal and Noise Transfer in
Medical Imaging Systems," COMP/AAPM July 2002, Montreal, Med Phys 29: 1344 (2002).

18. Yao and I.A. Cunningham. "Compton scatter in a thin detector: Theoretical signal and noise
transfer in the Fourier domain" in Medical Imaging 2002: Physics of Medical Imaging, San
Diego SPIE 4682 Feb 2002.

19. I.A. Cunningham. "Cascaded models and the DQE of flat-penel imagers: noise aliasing,
secondary quantum noise and reabsorption" in Medical Imaging 2002: Physics of Medical
Imaging, SPIE 4682: Feb 2002

20. J. Yao and I.A. Cunningham, "Influence of Energy Deposited by Compton Scatter on Imaging
System MTF and DQE", RSNA, Chicago, November 2001.

21. J. Yao and I.A. Cunningham, "Influence of Energy Deposited by Compton Scatter on Imaging
System MTF and DQE", COMP, Killowna BC, July 2001.

22. J. Yao, !T. Moschandreou and I.A. Cunningham, Cross Covariance of Correlated Point Processes
for use in Linear Systems Theory, World Congress of Medical Physics and Biomedical
Engineering, Chicago, July 2000.

23. T. Moschandreou, J. Yao and ].A. Cunningham, Use of the Cross Covariance in Linear Systems
Theory to Model the DQE of Detectors with Fluorescence Reabsorption, World Congress of
Medical Physics and Biomedical Engineering, Chicago, July 2000.
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Conclusions

This research award funded the development of what we have called the "parallel cascaded-systems"
method of calculating signal and noise-transfer properties of detectors used for x-ray mammography.
This method is now routinely used by scientists and engineers in laboratories around the world to
generate theoretical models of the DQE (detective quantum efficiency) of new and old x-ray detectors
based on physical design parameters. These models are critical for understanding how well a detector is
performing, relative to expected performance, and to develop new detectors optimized to produce the
best possible image quality. This award funded five publications directly and much of the science for an
additional six.

I am also pleased to report that this award was a turning point both in the development of new models for
understanding the signal and noise performance of new detector designs, and in terms of the research
program of this investigator. Based on results obtained during the tenure of this award, this investigator
has started a new major research program on theoretical methods for the optimized design of new
detector systems. At present, this investigator holds a new major five-year award from the Canadian
Institutes of Health Research (the Canadian equivalent of the NIH) plus new research funding from
General Electric Medical Systems and the Ontario Research Development and Challenge Fund totaling
over US$1,200,000. This funding can be attributed in great part to the initial funding provided by the US
Army Medical Research program.
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Parallel cascades: New ways to describe noise transfer
in medical imaging systems
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A generalized approach to describing transfer of the noise power spectrum through medical imaging
systems has been developed over the past several years in which image-forming processes are
represented in terms of a cascade of amplified point processes. Until recently, this approach has
been restricted to serial cascades only. Here we develop a generalized expression for the cross
covariance of amplified point processes and an expression for the cross spectral density for wide-
sense stationary conditions. These results extend the generalized transfer-theory approach to include
the description of more complex image-forming processes involving parallel cascades of quantum
amplification processes. This parallel-cascade approach is used to develop a theoretical expression
for noise-power transfer in a simple radiographic screen that includes the effect of characteristic
x-ray reabsorption. The result confirms earlier work by Metz and Vyborny, who showed that
reabsorption increases image noise and decreases the detective quantum efficiency at low spatial
frequencies. Use of the transfer-theory approach facilitates a straightforward generalization to many
new digital imaging systems including conventional angiographic and active-matrix flat-panel sys-
tems. © 2001 American Association of Physicists in Medicine. [DOI: 10.1118/1.1405842]

Key words: random point processes, amplified point processes, cross covariance, cross spectral
density, noise power spectrum, transfer theory

I. INTRODUCTION ing of system performance built upon a communication-
theory-based approach.

Medical x-ray imaging systems must be designed to ensure Using this method, many imaging systems can be repre-
that maximum image quality is obtained for a specified ra- sented in terms of serial cascades of three elementary pro-
diation dose to the patient. While there are many aspects to cesses: (i) quantum gain; (ii) quantum scattering; and, (iii)
"image quality," one important consideration is image noise linear filters. Transfer of signal and noise through these mod-
as described by the Wiener spectrum, or noise power spec- els can be described by cascading transfer relationships for
trum (NPS).1-3 The NPS describes the spectral decomposi- each process. In Appendix A, transfer properties of these

tion of second-moment statistics in terms of spatial frequen- three elementary processes are summarized. This approach

cies under wide-sense stationary (WSS) conditions.2' 3 It is has been used recently to describe signal and noise transfer

required for the determination of other image-quality metrics and the DQE of a number of x-ray medical imaging systems,
used to quantify image quality and system performance in- 21-23
cluding the noise-equivalent number of quanta (NEQ),1i 4 5 including film screen systems,2- active-matrix flat-panel
which describes an equivalent number of quanta forming an systems for digital radiography, 24 26 video-based systems for
image, and the detective quantum efficiency (DQE), 4-9  portal imaging and radiation therapy verification,27'28 and

which describes the ability of an imaging system to make other new system designs.29 -32

efficient use of the incident image quanta. Transfer theory is sometimes viewed as being simplistic,

Over the past several years, a generalized transfer-theory providing limited new insight into system performance.

approach 0°-12 has been developed to describe how the NPS However, this need not be the case, and we are developing a

is transferred from the input of an imaging system to the number of new transfer-theory relationships to describe noise
output image. 13-18 Of particular significance in this develop- transfer through processes where existing relationships are
ment was a description of how the NPS is transferred inadequate. These relationships form the basis of theoretical
through quantum gain and quantum scattering stages by Rab- "tools" that can be used by scientists and engineers devel-
bani, Shaw, and Van Metter13 and by Barrett, Wagner, and oping or assessing new system designs. Of particular practi-
Myers.' 9,20 This generalized description of image noise has cal importance is the spatial-frequency-dependent form of
resulted in a comprehensive framework for the understand- these tools for WSS conditions. They can be used to make a

2020 Med. Phys. 28 (10), October 2001 0094-240512001128(10)120201191$18.00 © 2001 Am. Assoc. Phys. Med. 2020
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theoretical prediction of the NEQ or DQE of a particular other imaging systems including digital flat-panel radio-
system design. graphic systems.

One such current limitation of the transfer-theory ap- Throughout the following description, we use notation
proach is that it has been restricted to serial cascades of the where the tilde (e.g., -) indicates a random variable, overline
elementary processes. This excludes the situation where (e.g., 0) indicates a mean value and boldface (e.g., r) indi-
more than one image-forming process must be summed to cates a vector. A table of symbols and definitions used is
form an image.16 For example, most of the energy deposited given in Appendix C.
in a radiographic screen by diagnostic x rays is through the
photoelectric interaction. This process often results in the
emission of a characteristic x ray that may be reabsorbed II. THEORY

elsewhere in the screen. Light is generated at both the The framework of this analysis is based in part on earlier
primary-interaction and reabsorption sites, but with different works by Barrett et al., 9'2 ° who developed the use of ran-
intensities. In addition, the reabsorption site is randomly lo- dom point process theory for studying noise in imaging sys-
cated but spatially correlated with the primary-interaction tems. A random point process is any random process for
site. Light from both sites contribute to the final radiographic which all sample functions can be represented as a distribu-
image recorded on film. However, it is not possible to de- tion of points, and we will represent each point as a spatial
scribe image noise as the sum of these correlated image- Dirac 5 function. For instance, a quantum image is described
forming processes using a simple serial cascade, and hence as a spatial distribution of b functions. However, these points
the effect of reabsorption has not been included in any may also represent a spatial distribution of certain events,
transfer-theory analysis. By extending the transfer-theory ap- such as a distribution of photoelectric events, or a distribu-
proach to include reabsorption, analytic models can be de- tion of photoelectric events when a K x ray is reabsorbed.
veloped for many particular systems that specifically de- A random point process is associated with two important
scribe degradation of the DQE due to this effect. This is quantities: the location of points in space where events occur
important to scientists and engineers who are concerned with and the number of such points.33 The mathematical realiza-
improving existing systems or developing new systems with tion of a spatial point process can be expressed as a sequence
improved image quality, of random impulses, given by

In this article, we extend the capabilities of the transfer- N

theory approach so that more complex systems requiring q(r) = I 6(r-T,), (1)
both serial and parallel cascades of these elementary pro- n=1

cesses can be represented. This is accomplished by develop- where r is a multidimensional spatial coordinate vector in
ing a general expression for the cross covariance and crossspecraldensty f nise rocsse tha ca bespace S where the point process is defined, ?,, is a continuous
spectral density of noise processes that can be incorporated random vector describing the location of the nth point falling
into the transfer-theory analysis (see Appendix B). Use is in S, and R is a random variable describing the number of
made of random point process theory, where a quantum im-
age is represented as a two-dimensional spatial point process points. The random vector ensemble describing the positions
in which each quantum is represented as a point of all N points is {I,: n = 1,2,..,N}. In this section, we de-

impulse.i1, 2 °'33 A general expression is derived for the cross rive a general expression for the cross covariance of two
covariance of two correlated random point processes. This is correlated point processes drawing on previous work by Bar-theariansped for the special case of wide-sses. statis rett et al. 19,2
then simplified pr the c ro ss stationary A quantum image is represented as a sample q(r) of the
random point processes where the cross spectral density random point process given by Eq. (1), where the space S of

Of practical importance for applications in medical imag- points denotes the two-dimensional image area. Our analysis
is also applicable to higher dimensional space. Although the

ing is the special case where each point process represents a size of S is arbitrary, an infinite size is required for the analy-
subset of a common input point distribution. The cross cova- sis under WSS conditions, and hence we consider S to be
riance of these two subsets is derived, and then generalized infinite in size.
to describe the cross covariance of the two distributions after
they subsequently undergo an arbitrary cascade of quantum A. Cross covariance of point processes
amplification and scattering processes. It is shown that a very For the general case, we consider two random spatial
simple closed-form expression for the cross covariance and point processes (quantum images),
cross spectral density exists under WSS conditions, where
the cross spectral density is the Fourier transform of the cross NA

covariance. Use of the cross spectral density is then demon- qA(r) = 5 S(r-!ý), (2)
strated in an analysis of noise in a radiographic screen with n=1

reabsorption. This problem was first solved by Metz and and
Vybomy 34 using a very different type of statistical analysis. ýB

Our work confirms their result, and is of a more general qB(r)y= 5(r-?q), (3)
nature that is readily extended to describe reabsorption in j=
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which may or may not be statistically correlated. The cross E{t7A(r)q*(r')JNA,NB}
correlation of qA(r) and q,3(r) is the mean of the product

qA(r)q*(r ),2 i.e., NA.f~S1ASIB

RAB(r,r')=(qA(r)q(r')), (4) N = N r n

where an asterisk denotes a complex conjugate and angular xpr V ,(o ,r'NNA,NB)}. (9)
brackets represents an expectation operator. The cross cova-

riance of qA(r) and qB(r) is given by It follows from the sifting property of delta functions that

B ~ (5) E{4rA(r)ý*(r')IJNA,NB}KAB(r,r') = RAB(r,r')-- %(r))(q*(r')). B5 {Ar•r)N,8

Barrett et al.19' 20 have shown that the mean of qA(r) in Eq. NA NB

(2) is given by E E pr V,-,(r,r'lNA,NB), (10)
n=1 j=1 n I

A(r)-(qA(r)) = prjV(rINA) , (6) where pr TA ,B(r,r'INA,NB) is the conditional joint density
NA function of " and -B for fixed NA and NB, evaluated at

where prp(rJNA) is the conditional probability density r and r==r'. Next, by averaging Eq. (10) over NA and

function of the process qA(r) describing the mean probabil- -B, we obtain the cross correlation of 4A(r) and MB(r) given

ity of finding the nth quantum at rn = r for a specified value by

of NA, and we denote by ( ), A the average over jRA. Simi- ý NA NB

larly, RAB(rr') pr• i (r,r']NA,N) (11)\ ,B =1 j=1 n • ,B

q(r) = ( (r))= pr B(rlN8) (7) From Eqs. (5) to (7) and (11), therefore, the cross covariance
\1] "NB. of qA(r) and M(r) is given by

If qA(r) is statistically independent Of MB(r), the cross cor- / ,A KjB

relation RAB(r,r') is equal to the product of their means, and KA'(r,r')= E E pr ' ,,(r,r' [NABNB)
the cross covariance KAB(r,r') in Eq. (5) becomes zero. n\=1 j=r ),1

Spatial point processes qA(r) and qB(r) are then called un-
correlated. / NB

In order to calculate the mean of the product ýA(r)ý*(r') pr p(rlNA) pr (N
in Eq. (4) where qA(r) and Mfi(r) may be statistically corre- ,,= , J= N .I

lated, we must average over all random quantities {i'r,}, {j}, (12)
RA and •B in processes "A(r) and Mi(r'). The procedure is

divided into two steps.' 9 The first one is to take the condi- Without loss of generality we assume that each point has
tional expectation of the continuous random quantities {A} the same conditional probability density function for given
and j d NA' and NB. By definition of the NA or NB. The probability density functions are therefore

foJ ie ttsia independent of the indices n and]j and we simplify our no-
average over a continuous random variable, shown in Appen- tiond bn g of and inead o and we Thus Eq.dix D, we have tation by using TA and TB• instead of ", and ") . Thus, Eq.

(12) becomes

E{ BA(r)qA(r')IN, NB KAB(r,r') = (NA Na pr •A•TB(r,r' INA,NB))ýA,•B

fJdrA4...fdrB{ E (r-rý)E S(r'-r) - (Ppr V(rINA))rA(NT"pr p(r'[NB))XýB,
f . n = 1 j = 1 

1 3(13)

X pr({I!},{<J}INA,N•B) where the PA ×F V- terms in the double sum over n and j are

identical.
NA NB Equation (13) is a general expression for the cross cova-

= . rJ d...j dr{ B 1(r- rA),S(r'- rB) riance of two random point processes under both stationary
= f=1 and nonstationary conditions. For imaging applications

Xpr({Qr},{r}INA,N B)}, (8) where, in general, NA,NB> 1 and the probability density and

where pr({rA},{xIN AN B) is the conditional joint density the joint density functions are independent of NA and NB, the
funtio ora{}{}Ndom vaia s the aondit~ ivena Nontde statistical nature of NA and •B can often be ignored and thefunction of random variables {}and {fTB given NA and

N B, and we use the symbol f. to denote a multidimensional cross covariance of two quantum images is then given by

integral over all S. Using the property of marginal densities, KA(r,r')-NNB[pr j iB(r,r')- pr 7A(r)pr TB(r')].

shown in Appendix D, we obtain (14)
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B. Cross covariance of random subsets of a random In Eq. (16), the point processes qA(r) and ýB(r) are random
point process subsets of in(r). We are interested in the cross covariance of

If the quanta in two images are independent of each other, qA(r) and qfl(r). In the following, we examine both first-

the cross covariance of the two images will be zero. This is order and second-order statistics.

certainly the case when two images are acquired indepen-
dently of each other. However, we are interested in the spe- 1. Mean
cial case where two point distributions (images) are not in- We calculate the mean of 'A(r) in Eq. (16) in two steps.
dependent, but are each random subsets of a common input The first step is to take the conditional expectation of eA(r)
point distribution or image. If quanta in the input image are for fixed {RJ} and N, i.e., for fixed qjn(r) refering to the
statistically correlated, there will in general be a nonzero sample space of qin(r), and then to average over qin(r).

cross covariance between the two subsets. Thus, we have
The process of randomly selecting points from a distribu-

tion is illustrated in Fig. 1. This random process represents a E(qA(r)jqi.(r)} N ,i(r-R,) qin(r)

sequence of independent trials in which each trial makes a E{Arqfl)}
random determination for each point in the input distribution.

The point is selected to path A with probability ý, and path B N

with probability C. That is, each trial is described in terms of = • E{•n}S(r-Rn)Iqi(r)

two binomial random variables, denoted by L and ý,, for the
nth trial, where each random variable can have a value of 0 N (

or 1 only. Each trial is independent of all others, but we will n= 8( - R,) (17)

allow statistical relationships between variables ý,, and , for

a given trial n. For N trials, the set of random variables where •, has the same mean value for all n, given by •, and
we use the symbol Iqin(r) to denote the computation condi-

and = required to describe a single image is given by tion, i.e., for fixed qin(r). Next, by averaging over qin(r), we
{•,, ,•,, :n= 1,2,....N. N} obtain the mean of •A(r) given by

Similar to Eq. (1), the input is a general spatial point

process rewritten as qA(r) = E{jqA(r)} = -qinl(r). (18)

N Similarly,
I=, (r-Rf,), (15) -(r) = E{jB(r)} = e-fn(r). (19)

where R,, is a random vector describing the position of the 2. Cross correlation and cross covariance
nth quantum in the input image. The point selection process The cross correlation of 4ýA(r) and MB(r), RAB(r,r'), is
is assumed to be independent of qin(r). The outputs •JA(r) the mean of the product qA(r)q*(r'), i.e.,
and MB(r) can therefore be written in terms of the random t

variables ý,, and ýn as RAB(r,r')=E{qA(r)q(r')}

qA(r)= • 8(r-R,,), = ,,6(r-R)R Zj 3(r'-Rj)/. (20)
nt= n=1 j =

N(16) Again, using an approach similar to Barrett et al.,19 compu-
tation of the expectation in Eq. (20) is divided into two steps.

n=1 That is, the first one is to average over {I,,} and {J,} for
fixed input qin(r), and then average over qjn(r). There are
two cases to be considered in Eq. (20), corresponding to n
=j and n ij. When n =j, which has N terms,

4A (r) E{qA(r)q*(r')lqjn(r)},,=j

qjý(r)An=)

qR (r) It is convenient to denote the cross correlation of L and Z,
FIG. I. Illustration of randomly selecting points from a random point pro- for n 1,2,..,N as R It is nonzero when the
cess. Both qA(r) and ýB(r) represent randomly selected subsets of the input two random variables are nonorthogonal. For instance, if the
point process j,(r). two images A and B represent identical subsets of the input
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distribution, where =',,, they are correlated and the cross qAo(r) APP 4A ()
correlation of • and • is RfC. If the two images represent p•(r,R)
complementary subsets, where there are no common points / E
in A and B, then 1, is orthogonal with i,, i.e., Zr=(l
-•) and R 6= 0. With this notation, we have

E A(r)q*(r')jqin(r)}=jN ,APP 4B (r)

=-Rt S, (r-- R,1 )S(r' -R,,)I jAPP: Amplified Point Process
=R r i(r = () FiG. 2. Schematic illustration of two parallel amplified point processes.

R ý q ,IqLL') Building on Fig. 1, qA0(r) and qB,(r) represent random subsets of an input

point process qin(r), that each subsequently undergo an amplified pointWhen n Oj, the random variable •is independent of Zj and process.
Efý,, Zj} = 6 . In this case, we have

E{fA(r) q (r') I qio(r)} ,,j
=( ý Finally, the cross covariance of qA(r) and 4yB(r) is

E j(r- ,,),5(r'-Rj)qin(r) i given by

fl =1 l-.j KAB(r,r')=RAB(r,r')_ -A(r)_B(r')

=5- (r-R,,),5(r'-Rj)j,,,, Kýir,(rr)sRj~'N- N

n~lj~l-•(r)q- (r'). (29)

=sýqin(r)qin(r') j.¢j (23) Combining this result with Eqs. (18) and (19) gives

Adding Eqs. (22) and (23), the conditional expectation of the
product •A(r)B*(r') is given by KAB(r,r')=Kr-qin(r)5(r-r')+•Kin(r,r'), (30)

E{jqA(r)cj*(r')1qin(r)} where Kin(r,r') is the autocovariance of the input point pro-
cess ýin(r).

=Rf~qin(r)qin(r')j,,=j+, qin(r)qi.(r')l,,*j, (24) Equation (30) is a general expression for the cross cova-
riance of 4"A(r) and ýB(r), where each is a random subset of

which after averaging over 'in(r) yields the input point process. It consists of two components. The
S(25 first represents uncorrelated noise given as a 8 function

(25) scaled by the cross covariance Kýý of the two binomial ran-

where Rin(r,r') =E{j'i(r)ý(r')} is the autocorrelation of dom variables and the mean number q-in(r) of quanta per unit
q'in(r) and can be expressed as area in the input. This component is zero when A and B

represent independent subsets of the input, and nonzero oth-
Rin(r,r') =Rin(r,r')1,,=j+Rin(r,r'),,;j. (26) erwise. The second component represents correlated noise

and is proportional to the cross covariance of the input point
Equation (25) can be further simplified by noting that for a
general point process as in Eq. (15), we have 19' 20  process, Kin(r,r').

C. Cross covariance following an amplified point
in(27) process

From Eqs. (25) to (27), therefore, the cross correlation of A more general case involves the cross covariance of two
qA(r) and Mi(r) becomes point processes that undergo point amplification subsequent

RAB(r,r') to selection as illustrated in Fig. 2. In Fig. 2, ijA0(r) and
q 8 0 (r) each represent subsets of the input point process

=Rý ýRin(r,r')I,=j+ {[Rin(r,r')-Rin(r,r')j,,=j] qin(r). The distributions qA(r) and qB(r) represent the re-
sults of each subset undergoing a subsequent independent

= (Rf ý- ý)Rin(r,r'f)l=j+ W Rin(r,r') amplified point process. Following the work of Rabbani,
Shaw, and Van Metter,13 and Barrett et al.,19' 20 an amplified
point process is considered to be a random point process

((28) where each point is converted into a random "cluster" of kl,secondary points distributed by the random vectors {A,,k :k
where Ktt is the cross covariance of random variables 6, and = 1,2,.... k,}. This can be expressed as a cascade of the el-
c,,, given by Kfý=Rft- 6. ementary processes quantum gain and quantum scatter, de-
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scribed in Appendix A. If each amplification process is inde- (a) average over displacements {Ik} for fixed R.,
pendent of all others, the point processes qA(r) and ýB(r) in (b) average over number V of secondaries for fixed R.,
Fig. 2 can be written as (c) average over binomial random variables ý,, for fixed

P, qin(r),

qA(r)= 8 S(r-R.,,-k), (d) average over positions {kR} of input quanta for fixed
n=I k=I N, and

N Z (31) (e) average over total number N of input quanta to get the
cqB(r) = K,,• - 1B result Ef•Ar)}.

n=l k=l
Steps (a) and (b) calculate the conditional expectation of sec-

where the nth input quantum randomly located at ~ if ondary points given a primary. Step (c) averages over the

passed to paths A and B produce ,, and k, quanta, respec- selection of quanta entering path A for fixed input. An aver-
tively, and age over the input point process is obtained in steps (d) and

-4 ,4 (e). In an attempt to simplify the notation, we will use the
n k=R"+ k, k step label as a subscript to express the result of a step (a)-

and (e). For example, denote by E(a){jA(r)} the result of step
-FB + -B (a).

n k k + nStep (a) is the statistical average over the continuous ran-

are random vectors describing the positions of the kth quan- dom vectors {AnAk} given R.. In a similar way to Eqs. (8)-
tum produced by the nth primary in the image plane for each (10), we can obtain
path. As assumed by Barrett et al.,19'20 we assume the ran- N

dorn~ dslcmns:A 2JBn
dom displacements A,,k and ,,k are independent of all oth- E r[(R,,)]- I ArRn), (36)
ers, possibly depending on the position of the primary for E= l k= R(
nonstationary processes. A A

Denote by prA where the probability density function pr(A ,,kIR.,) has been
function of probability density expressed in terms of pA(r,R,,) from Eq. (32). We can sim-plify Eq. (36) into

{ nAk:k= l,2,...,kn ; =1,2 ...... !} N~' I,,[k, (R,]P(r,Rj), (37)

given the primary R,,. The following relationship is then E(a){•jA(r)}= d • (37)
known: 

19,20  n=1

A RI A A since the kernel in the sum over k is independent of k.
"p(,,k+Rl,R,,), (32) Step (b) requires the average of Eq. (37) over discrete

where the mean number P(R,,) of secondaries resulting value Vn given R,,. This leads to cancellation of[k A(R)]- 1

from primary R,, in path A is in Eq. (37) because of the conditional expectation of kn
given Rn as shown by E(b){k}=-Pj(R,). Thus

k,(R,,)= JdrpA(r,R,,), (33) N

E(b){jA(r)}=E(b){E(.){qA(r)}}= ýn dp(r,Rn). (38)
and pA(r, Rn), for path A, is defined as the mean distribution n=I

of secondaries at r when a primary is absorbed at R,,. Simi- Step (c) can be obtained simply by replacing s,, in Eq. (38)
larly for path B, we have with ý-since ý,, is independent of all other terms for given

prB(A,,IR,,)=[k,(R,,)] B PI(A k+R,, ,R,,), (34) R,,, i.e.,
B AB N

where prj(A,,kIR,) is the univariate probability density func- E(,){1A(r)}=E(,){E(b){jA(r)}}= E N pA (r,Rn). (39)

tion of {1'3k} given R,, and n=

_-B Step (d), averaging over the positions {R,,} of input quanta,
k- (R,,)= Jdrpd(r,R,,). (35) is obtained by using Eq. (D6), giving

We now examine the means and cross covariance of qA(r) E(d){jA(r)}

and M/i(r) for these amplification processes. - F N

= dRIf"JdRN>= ýP(r,Rn)pr {l,,}({R.}IN)

1. Mean N

The mean of the point processes qA(r) and qfi(r) are =d dR'"fdRup•(r,Rf)pr {f,({R,,IN).
calculated using an approach similar to that described by
Barrett et al.19 For path A, the procedure is as follows: (40)

Medical Physics, Vol. 28, No. 10, October 2001



2026 J. Yao and I. A. Cunningham: Parallel cascades 2026

The nested integrals of the joint density function over {Rf} shown previously. Step (a) is to average over displacements
except the one with n is represented as the marginal density {A"k} in 4A(r) and {2B k} in Mfi(r) for fixed {RJ}, denoted
pr j,(RnIN) using the property of marginal density as de- by E(.){%A(r)qB(r')}. Step (b) is to average over and -B

scribed by Eq. (D5). Thus, for fixed {RJ}, denoted by E(b){%jA(r)•jB(r')}. We assume
N the point amplification processes in paths A and B may de-

• -•--dR,,pA(rRn)pr - (R,,IN) pend on incident locations {Rn}, but are independent of all
_nl other terms. That is, both the gain factors {1P} and {kJ} are

N independent for all n and the scatter vectors {I.k} and {AIk}
= fdRpd(r,R)pr R,(RIN), (41) are independent for all n and k. Therefore, we can write

"= 4 down the results for steps (a) and (b) as
where the integration variable R, is renamed R in the last
line. Since the conditional expectation of qin(r) for fixed N E(a){qA(r)qB(r')}=E(.){qA(r)}E(.){JB(r')} (48)
is given by [see Eq. (6)] and

Nan
E~fqin(r)JN}= 2 pr jn(rJN), (42)

,,_ E(b){1A(r)qB(r')}=E(b){qA(r)}E(b){fB(r')}, (49)

then Eq. (41) becomes respectively. From Eq. (38) and

E(d){%A(r)}• fdRpA(r,R)E{•i.(R)IN}. (43) N
E(b){qB(r')}=jE=l ýjpB(r',Rj), (50)

Step (e), the average of Eq. (43) over R, yields 1=1

-( _ ( we can obtain the following result:•(r) = 4dRp,•(r,R)•7,(R), (44)
N N

where q(in)(R) was obtained by averaging E{ 1in(R)IN} over E(b){JA(r)•B(r')}= = p(r,R,

N. Since q 0 (r) = 7qin(r), where point process 0"A0(r) is the (51)
output of the point-selection process for path A (see Fig. 2),
we obtain In order to average over {,,} and {J} for fixed

qin(r) in step (c), we must consider two cases,
q- (r)= dRp"(r,R)q7o(R). (45) denoted by E(C){,A(r)MB(r')}l,=j when n=j and byE(,){1A(r)4B(r')}I,,?j 

when n--ij.

Equations (44) and (45) are general expressions for the For the double sum over n andj in Eq. (51), there are N
mean of an amplified point process. Similarly, the mean of terms with n=j. Averaging these N terms in Eq. (51) yields
qM(r) is given by

q = (r)=-dRpB(r,R)qIn(R)/ )

= \ ",,pd(r,R,)pd(r',R,)

= dRpB(r,R)qo(R). (46) n=1(Wn

2. Cross correlation and cross covariance = E E{jfll}pA(r,R,,)pB(r',R,,)
nt=1

We now calculate the cross correlation for the output N
point processes qA(r) and M(r). By definition, RAB(r,r') is =Rý, pd(r,R_)p=(r',R,). (52)
given by d,

RAB(rr') =Ep RA(r)q,(r')(Bq The calculation for steps (d) and (e) on Eq. (52) is now
TV similar to what was done in Eqs. (41)-(44). Thus, the result

= ,, (r-TR,,-1,k)E in is given by
(n~l k=1 I~

ZB' E(,){%4(r) Mar')} J,,=j R,,fý dRp,4(r,R) pB(r',R)q- (R).x 1 - -" f di
XE (r',- A,,). (47)

kA 1 (53)

Similar to the computation of the mean of qA(r), we calcu- Next, consider the case of n Oj for step (c). From Eq.
late the expectation in Eq. (47) by the five steps (a)-(e) (51), we have
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E(,){qA(r)qB(r')}],,*j

4Ao(r) APP / / APP 4A(r)/• N N()..- p,'(r, R) [---- pj(r, R) [-

= Z £ "•,jp•d(r,R.)p'(r',j

)(c) nA]

N N

= E J E (r,Rn)pB(r',Rj)],jn

APP APP .(r)
N N pr(r,R,))p(r',nj)j. (54)pd'(r, R)

n = j p= ( tAPP: Amplified Point Process

Again, similar to Eq. (41), step (d) applied to Eq. (54) now FiG. 3. Schematic illustration of two parallel cascades of amplified point

gives processes operating on randomly selected subsets of the input point process
E (d){qA (r) •B(r ,)}[,0 ýJq+r) .-

= f • d dR'pA)(r,R)p~dB)(r',R') Adding Eqs. (53) and (59), the cross correlation of qA(r)

and •B(r) is given by
N N

X pr• (RR'IN) (55) RAB(r,r')=K• dRp A(r,R)PB(r',R)q-ja(R)+, dRn=l j=l •nztjf. d d tf

Based on the work by Barrett et al.19 it can be shown that A(×fdR'p•(r,R)p•(r' ,R')Ri 0(R,R'), (60)
N N

E{•in(R)qin(R')jN}I,*j=j I prj"ý,(/R,R'jN)I.,*j.
n=I j= which is a general expression for the nonstationary cross

(56) correlation of two subsets of a point process each undergoing

Substituting Eq. (56) into Eq. (55), we have an amplified point process. The cross covariance of qA(r)

and cjB(r) is given by subtracting the product of means from
E(d){qA(r)B(r' )}IlnOj the cross correlation. From Eqs. (44), (46), and (60), finally,

= ( <fdRfdR'{p&(r,R)pB(r',R') we have
ý KAB(rr') =K-- dRpA(r, R)p(r',R) q0 (R) + dR

X Ejqm(R)ýn(R')1N}1n+v}. (57)f.Tf

Now it is easily shown that step (e) applied to Eq. (57), to XfdRpd(rR)pd(rR)Kin(RR), (61)

obtain the average over R, gives which is the desired result. For the case illustrated in Fig. 2,

E(,){qA(ir)q•(r')}j,,¢j the expressions given by Eqs. (60) and (61) show that: (a)
the correlation in 4A(r) and M'(r) is proportional to the

= f dRf dR'p,(r,R)pB(r',R') cross correlation of the binomial random variables L,, and Z'
f.) describing the point selection as given by the first term on

XE{-in(R)•-in(R,)}j,,,-j the right-hand side of Eqs. (60) and (61), and (b) any corre-
lation in the random source ýin(r) is transferred to the out-

= dR f dR pA(r,R)pB(r',R,)Rin(R,R'),*, . puts through paths A and B as shown by the second term.

(58) D. Cross covariance following multiple amplified

To replace Rin(R,R')Inj in Eq. (58) with Rin(R,R'), we point processes
invoke Eqs. (26) and (27) again. Thus Eq. (58) becomes We now generalize the results of Eqs. (60) and (61) de-

E(,){qA(r)M~r')}I,,*j rived previously to an arbitrary number of cascaded amplifi-
cation stages in each of the two paths A and B, as illustrated

fdR f dR' pA(r,R)pB (r,,R,)Ri,,(R,R,) in Fig. 3. In Fig. 3, qAA0(r) and qB0(r) are random subsets of
the input point process qji(r) and undergo multiple amplified
point processes resulting in qA(r) and qy(r) in paths A and

-•-•dRpA(rR)pB(r',R) qi&(R). (59) B, respectively. This analysis assumes that each amplifica-
d d~ tion stage is an independent process.
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1A()*; ~ (A~)q(' qA,. (R-)~P (RAiL1,AL_2 qA,.
PA ,

FIG. 4. Illustration of the transfer of
mean for multiple amplified point pro-

u Pcesses.

Similar to the procedure discussed previously, we calcu-
late the cross correlation of jA(r) and qB(r) in two steps: (a) H(q--R)) = dRpr ,(r- R) kq-(R)

average qA(r) and qB(r) for fixed qA0(r) and qBo(r); and

(b) average over A 0(r) and B 0o(r) to get the result. Under =k pr 1(r)* q(r). (67)
the condition of fixed 4Ao(r) and qB0o(r), the point process

qA(r) is independent of MB(r) due to the independence of We now consider the means of A(r) and ýB(r) in Fig. 3.
each amplification stage in Fig. 3. Thus, from Eq. (4), The mean of the output ýA(r) may be obtained by cascading

_, Eq. (64) with the L amplification stages, as shown in Fig. 4.
RAB(r, r')[ = E A(r)( r') After the last amplification stage, the mean q (r) is given by

q,,(r) q 8 0 tr) Eq. (64) as

q - (r) q ( r') lq•,o r), (62)
qB0(r) •q(r) =paL(r,RAL- )*Vq-A£ _(RAL-1), (68)

which shows that the conditional cross correlation of "A(r)
and qq(r) is the product of their means for fixed "A0(r) and

qB0(r). Therefore, it is useful to first derive expressions for

the mean values of A(r) and ý7B(r). =dL RAL- )*."''*pa(RAR)*qR) (69)
We define the integral operator H(.) as a mapping from A d dq 0

the mean input •(R) of an amplification stage at R to the
output at r, where q(R) is a point process. Thus, in terms of Similar to the associative property of the convolution
Eq. (45), integral,35 the superposition integral operator is associative

and we can combine the pd( ) terms resulting in

H(q7-R))= fdRPd(r,R) q7R), (63)

q• (r) =pA(r,R)*vq- (R)= fdRp (r,R) (70)
which is written in short form as A d A0 (70)

H(q(R)) =pa(r,R)*%q-(R), (64) where we have defined pd(r,R) as
where % represents a superposition integral operator. For a
single amplification stage, the mean distribution of second- pA(r,R)PAL(r, RAL- I)*"- "*,p~I(RAI,R). (71)
ary points is given by the scatter point spread function scaled

by the amplification factor. Therefore, from Eq. (32), we Similarly, for path B, we obtain the mean of qB(r) as
have

pd(r,R) =k,,(R) pr 7(r- RIR) (65) q(r) =pB(r,R)*,,q-(R) = fdRpB(r,R) qR (72)
for each stage, and it follows that

H(q7R))= f dRpr ,(r- RIR) k,-(R) q7(R), (66) w

which is equivalent to Eq. (63). This result can be found in Pd(r,R)>pdl(r,RI-1)*• . .* 5pd(RfI,R). (73)

Ref. 13, developed by Rabbani et al. from the view of mul-
tivariate moment-generating functions. If the amplified point These results show that for the purpose of describing transfer
process is shift invariant, then the mean gain and density of the mean value, cascaded multiple amplified point pro-

function are independent of position R, where kj(R) kand cesses can be described as a single amplification stage. Since

pr ,(r-R[R)=pr a(r-R). In this case, Eq. (66) becomes q0(R) = -n(R) and qB(R)= -qn(R), Eqs. (70) and (72)
the convolution integral, i.e., may be written as

Medical Physics, Vol. 28, No. 10, October 2001



2029 J. Yao and I. A. Cunningham: Parallel cascades 2029

(74 qA0 (r) k~A~Ip( -- kA 1 L(A(r)

~~(r. =r _ 75

which are the generalization of Eqs. (44) and (46) for cas-
caded multiple amplification stages. Note that for fixed . pr.i(r) _ -* ,Mp 4B (r)
q~o(r) and qBo(r), Eqs. (70) and (72) become qB0 ,,

q fdRpA(rR)qA0 (R), (76) FIG. 5. Schematic illustration of shift-invariant system with two parallel
A A,() d 0cascades of multiple amplified point processes.

•(~qo(r)f= f Rp (r,R)qBo(R). (77)

with intensity process b(r), which they call the random input
Combining Eqs. (76) and (77) with Eq. (62) gives fluence. In x-ray imaging, for instance, the random nature of

RAB(r,r') IqAo(r) quanta arriving from a radiation source makes b(r) spatially

qB0(r) random.
For the input point process q'in(r) of doubly sto-

= dRf dR' PA(rR)pB(rR') qA5 (R) qB0(R'). chastic Poisson impulses, Barrett et al. show that the mean is
given by

(78) - (r) = b• r) (81)

The second step is to average Eq. (78) over random sub- q b(

sets q'A0(r) and B0B(r) of the input point process mia(r), and the autocovariance is

giving Kir(r,r')=b(r)5(r-r')+Kb(r,r'), (82)
RAB(r,r')

where Kb(r,r') is the autocovariance of b(r). Substituting

= fdRf dR' pA(r,R) PB(rR') EjqA5(R) qB0(R')} Eqs. (81) and (82) into Eq. (30), we obtain (see Fig. 1)

KAB(r,r') =Reý b(r) 5(r- r') + ý ( Kb(r,r'), (83)

= fJdRdR'p.(rR)pd(rR')RAo 0B(RR'). (79) where Rc=K 4+ is the cross correlation of random bi-

nomial variables L, and Z,. Similarly, substituting Eqs. (81)
In Sec. IIB 2, we derived the cross correlation for random and (82) into Eq. (61), after some algebraic manipulations,
subsets of a random point process, given by Eq. (28). Com- the cross covariance becomes
bining Eq. (79) with Eq. (28) gives

RAB(r,r') = dRp A(r,R)pB(r', R) qii(R) + dR KAB(r,r')=R6R f dRpd(rR d(r',R) b(R)+ Tf dR
A Bf~' dR'c d•rRp('R)bRR) d(84)T

X f dR' pA (r,R)pB (r',R')Ri.(R,R'), (80)X dRpr, dr' )K(R) 84

which has the same form as Eq. (60) for a single amplifica- which is the result of Fig. 2 for the input process of doubly

tion stage. Subtracting the product of qA(R) and q(R), stochastic Poisson impulses. Equations (83) and (84) are

given by Eqs. (74) and (75), from the cross correlation in Eq. given to show the relationship to Barrett's work, but are not

(80), we conclude that the cross covariance KAB(r,r') is also required to obtain the following special cases.

given by Eq. (61), where pA(r,R) is described by Eq. (71)
and pB(r,R) by Eq. (73).

2. Shift-invariant system with multiple amplified
E. Important special cases point processes

1. Doubly stochastic poisson impulses source If the system shown in Fig. 3 is shift invariant, which

In medical imaging systems, x rays incident on a detector requires that the mean gain and the probability density func-

form a quantum image that can be expressed as a sample tion for each amplification stage be independent of position,
function of a spatial point process "in(r) as in Eq. (15). Bar- then the propagation of the mean of the input point process is
rett et al.19 have shown that such a point process may be shown in Fig. 5. From Fig. 5 and Eq. (67), it is easily shown

described in terms of doubly stochastic Poisson impulses that
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A(r) = kpr3(r)*qo(r), KAB(r,r') =KAB(r-r')
- B=' (85)B PBkk n

SkdprR(r)Pr,(r),((85)R) pr,( r - R)

where the probability density functions prA(r) and pr ,(r) for
the entire amplified point processes along paths A and B, + kAk8 dR fdR' pri(r-R)
respectively, are expressed as convolutions of the density
functions of substages in each path, i.e., XB (rRI K'R-R')×prT(r -')Kn(R-').(91)

A =AL AL I A, rApr•(r) =pr~r)*prL- (r)**p.~ r
A , 7, ( A. *pr '(r), By changing the integral variable R such that T-' = r' - R, the

Br BpM BM_ I (r) B, (86) integral of the first term in Eq. (91) can be rewritten as
pr-~r}-prý (r) *pr-j - *. .. *pr.. (r),A& A A

and the mean gains P and kP for the entire amplified point f d-' prj(r-r'+ T) rý(r),
processes of paths A and B, respectively, are given by

L M which is the correlation integral of two functions prj(') and

kA=]-I •, ~k - k'i. (87) pr(i') over r', denoted in short form by pr!(-)*pr!(i),
i=1 j=1 where -"= r-r'. Moreover, for the double integral of the

From Eq. (32), we obtain the function pA(r,R) for the entire second term in Eq. (91), we perform the changes of i'= r'

amplified point process of path A, i.e., -R' in the R' integral and i" +9'= r- R in the R integral,
yielding

pd (r,R) = kprl(r- R). (88) rr [ 1

Similarly, we have Jd" Jd' pr4( " + i") Pr(4)]Kin(r- r' -

B The integral over i' is the correlation integral of pr!(r")
pd(r,R) = Pkpr(r- R). (89) Band pr•( I'), and the integral over 1r" is the convolution

Substituting Eqs. (88) and (89) into Eq. (61), the cross cova- antegral of the contodution

riance function of qA(r) and M~r) is given by integra oftecrrelation integral and Kin(2-). At this point
we simplify our notation and let pr(T) = pr 7,( '). Therefore,
Eq. (91) becomes

KAB(r, r') dRprj(r- R) pri,(r' - R) q in(R)
K AB("r) = K0• A k qinpl'A( ')* prS(,r)

+ FkA kfdRf dR' prA(r- R) + ýFkAkP[pr'4(')*prB(7')]*Kin(T), (92)
which is the desired expression of the cross covariance for

Xpr (r'-R')Kin(R,R'), (90) wide-sense stationary qA(r) and M"i(r).
The cross spectral density for paths A and B is defined as

which is the desired result for the case when the system is the Fourier transform of the cross covariance KAB(T),
shift invariant, given by

NPSAB(v) = .- {KAB( ')}

3. Cross covariance and cross spectral density KAkB -5{pr 4 (7 ).pr.(•.)}
under WSS conditions

If the output point processes q,4(r) and MB(r) in Fig. 2 are + CCkk F[prA(T)*prB( )] *K1 .( T)}.

wide-sense stationary (WSS), we can describe the correlation (93)
between two paths A and B in the frequency domain by theirbrossspetweenctwat Aand Bhich in tequec domain theFourie r tr Then the final result for the cross spectral density under WSS
cross spectral density 3 which is equal to the Fourier trans- conditions is

form of the cross covariance KAB(r,r'). For the wide-sense

stationary conditions, the input process must be stationary in
the wide sense and the amplification processes must be shift NPSAB(V)=PP P
invariant with uniform mean gains of quanta in an infinite (94)

imaging plane. Thus, qin(R)=qin and Kin(R,R')=Kin(R where NPSin(V) is the NPS of the input point process [the
-R'). Moreover, the functions pA(r,R) and paB(r',R') in Fourier transform of Ki,(T-)], TA(v) and TB(v) are Fourier
Eq. (61) are replaced with the products of their correspond- transforms of pr-4 (7) and prB( T), respectively. When paths A
ing constant mean gains and shift-invariant density functions and B represent a cascade of multiple amplified point pro-
as in Eqs. (88) and (89), respectively. We obtain cesses, the mean gains kA and kP are the product of mean
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Creation of many optical quanta
from each interacting x ray
(ignores variance in gain)

Selection of incident x rays
(probability qt) that interact In i Spreading of light

Path A: light emitted locally q,(r), quanta representedwhen no K x ray is produced q as a convolution

01-W•) FIG. 6. Schematic of the parallel cascade model used to
no Path B: light emitted locally rte(r). determine the reabsorption of characteristic K x rays in

rh a ot + (r) a radiographic screen. Variance in the gain m describing

Pat: light emitted remotely light generation is ignored to allow comparison with the
) when a K' x -- ' rayIsreabsorb qc"(r)' results of Mety and Vybomy.

Selection of events (probability

;w) that produce a K x ray /
("Bernoulli" branch) Scatter process to determine

/ where the K x ray is reabsorbed
Selection of events (probability fu) Summation of all light quanta
In which the K x ray Is reabsorbed generated In screen

gains along each path as given by Eq. (87), and prA( 1 ") and by Metz and Vyborny 34 using a relatively sophisticated sta-

prB(i") represent the cascaded probability density functions tistical analysis. We show that the same result can be ob-

for each path as given by Eq. (86). Taking the Fourier trans- tained using a simpler linear transfer-theory model that in-

form of both sides of Eq. (86) shows that TA(v) and TB(v) cludes parallel cascades and the cross spectral density

represent the product of all scatter transfer functions along derived in Sec. II.

each path, as given by Figure 6 illustrates a "flow diagram" showing the se-
quence of events leading to light production in the Metz-

L Vybomy model. WSS conditions are assumed throughout so

TA(v) =l TAi('), that each position in this diagram represents an intermediate
(95) step between input and output, characterized in terms of a

M(95) two-dimensional distribution of quanta (points) q(r). The
TB(v) =l T-( V), processes included in Fig. 6 are based on three "elementary

j= 1 processes" (see Appendix A) in the serial cascades plus

where TAi(v) is the Fourier transform of the probability den- branch points that give rise to the parallel cascades.

sity function of the ith substage in path A. The probability Several simplifying assumptions are made in order to be
t consistent with Metz and Vybomy 34 and with earlier work by

density functions always have unity area, and hence the 3637 hey include

transfer functions TA(v) and TB(v) always have a value of Rossmann.re Thei the following: (a) incident x
unity at v=0. rays are assumed monoenergetic; (b) differences in light

The transfer functions will be complex if prA(i-) or prB(") emission due to different x ray interaction depths are ig-
is asymmetric in T'. For this reason, the complex form of nored; and (c) only photoelectric interactions are considered
NPSAB(sm) must be maintained. However, as shown in Ap- and it is assumed all absorbed energy is absorbed at the point

pendix B, the sum of any cross term pair, NPSAB(V) of interaction. Metz and Vyborny also ignored the statistical

+NPSBA(v), will always be real only, and hence the result- nature of light generation in the screen.

ing NPS will always be real only. At the input to the model in Fig. 6, a uniform x-ray dis-
ig.wlawytribution consisting of q-quanta/mm2 , each with energy E•,

is incident on the radiographic screen. These quanta are Pois-
III. APPLICATION: REABSORPTION OF son distributed, and hence have an associated NPS given by
CHARACTERISTIC X RAYS IN A RADIOGRAPHIC NPS(v) = q.38 A fraction y of these incident quanta will re-
SCREEN suit in a photoelectric interaction in the screen. Selection of

Equation (94) is the general expression for the WSS cross these events is represented as a stochastic selection (binary

spectral density of two parallel cascaded amplified point pro- gain) stage, where gain is represented by a random variable

cesses descending from a single input point process. In the ý that can have a value of 0 or 1 only and mean of 77. The

following, this result is used in a description of characteristic output from this gain stage is a two-dimensional distribution

reabsorption in a radiographic screen. of photoelectric events in the screen.
As described by Metz and Vyborny, there are three pos-

A. Parallel cascade model of K fluorescence in a sible sequences of events whereby light can be generated for
radiographic screen each photoelectric interaction: (1) absorption of the primary

We examine here the effects on image noise of fluores- x-ray photon at the primary interaction site without emission
cence reabsorption in a radiographic screen, where light is of a characteristic K x ray; (2) absorption of the primary x
emitted at both the primary photoelectric interaction site and ray accompanied by emission of a K x ray; and (3) reabsorp-
at the reabsorption site. This problem was studied previously tion of the K x ray at a remote location. These three se-
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A) APP 4q() random relocation of the K x ray is a quantum scatter stage

P AA as described in Appendix A. At the reabsorption site, the K x
yesPd (r,_R) aeray is converted to optical quanta with a conversion factor

V/m. Events are selected for both paths B and C for every
"no" event in the Bernoulli branch. We call the point of

separation of paths B and C a "cascade fork."
Due to geometrical spread and possibly light scatter in the

noAPP B q(r) screen, optical quanta are distributed spatially with a normal-

oB.(r) pd(r,R) ized point-spread function (PSF) given by po(r). To be con-
t APP; Amplified Point Process sistent with Metz and Vybomy, who ignore the statistical

nature of light scatter, this redistribution of light is repre-
sented as a linear filter (convolution) with a kernel po(r).

FiG. 7. The Bernoulli branch with amplified point processes. The total light emitted from the screen is therefore the
sum of contributions from each path, resulting in

quences correspond to paths A, B, and C in Fig. 6. qo=qA + qB + qc (96)
Path A describes the emission of light at the primary in- quanta per unit area, where we have used Eq. (All) and

teraction location when no K x ray is produced. For each To(O) = 1 for the output linear filter in Fig. 6, and To(v) is
photoelectric interaction, there is a probability ;(0 that a K x the Fourier transform ofpo(r). The contributions from each
ray will be generated, and therefore a probability (1 -to)) path can be obtained by cascading the elementary processes
that a K x ray is not generated where , is the probability that, (see Appendix A) included in each path and considering the
when an incident photon interacts in the screen, it undergoes outcome probability of the Bernoulli branch. Then, we have
a K-shell interaction, and &o is the fluorescent yield of
K-shell photoelectric interactions. This branching is repre- q -m(1-o ,
sented in Fig. 6 as the diamond-shaped "Bernoulli branch." - ) q (97)

It is to be interpreted as a Bernoulli trial 2' 38 that, for each =(-"')m , (98)
interaction, determines the outcome "yes" or "no," where qB(-.S7 q,

"yes" is obtained randomly with a probability sto, and "no" -

otherwise. If a K x ray is not produced, corresponding to q c /nnfS(07q. (99)

path A in Fig. 6, it is assumed that the incident x-ray energy Substituting Eqs. (97)-(99) into Eq. (96), we can obtain
E. is absorbed locally producing the number m optical
quanta (the gain factor m is assumed to be proportional to the qo= q 7m [1 - 0 to( 1 -fK) ]. (100)

absorbed energy) which will be emitted from the screen. The NPS of light emitted from the screen, denoted by
Metz and Vyborny ignore the statistical nature of light emis- NPS,(v), is therefore given by (see Appendix B)
sion. We therefore represent m as a deterministic gain factor
with variance or-,=0. This is done to allow comparison of NPSo(v)=[NPSA(v)+NPSB(v)+NPSC(v)+NPSAB(v)
our results with Metz and Vyborny, and to focus attention on
the parallel aspects of the model. For this reason, Swank + NPSBA (v) + NPSA c(V) + NPScA (P)
noise and other conversion noise does not appear in the + NPSBc(p) + NPSCB(V) ]I To(V)12 (101)
model. Note also that the gain factor m only describes gen-
eration of the number of light quanta that are emitted from consisting of the NPS from each of the paths A, B, and C
the screen.

plus corresponding cross terms as described in the following
Path B describes light emission at the site of the photo- for the parallel paths with "Bernoulli branch" and "cascade

electric interaction when a K x ray is emitted (which may or fork" selection processes.
may not be reabsorbed). In this case, the energy EK= VIE, is
carried away in the K x ray, and the remaining energy E,
-EK is deposited at the primary interaction site. Thus, (1 1. Bernoulli branch
- iA)m optical quanta are emitted at the primary interaction The Bernoulli branch with amplified point processes is

site for each photoelectric interaction where iII=EK/E. and illustrated in Fig. 7. Each quantum in the input point process
EK- 5 9 .3 keV for tungsten in the calcium tungstate screen, is selected for path A, denoted by "yes," when 1 and

Path C describes the light emitted from the screen at a
remote site due to reabsorption of the K x ray, where fK is for path B, denoted by "no" when 6,= 0. The Bernoulli

the probability of reabsorption somewhere in the screen for branch is a special case of the point selection process de-

each photoelectric interaction producing a K x ray. The lo- scribed in Fig. 2 where the two binomial random variables

cation of reabsorption is random, but the point-spread func- are related by I= (1 - 6). This results in the cross covariance

tion PK(r), which has unity area, describes the probability of these random variables given by

density that the K x ray is reabsorbed at a distance r from the
photoelectric interaction site. The process representing this K =E{•,,ý5 } -E{•,,}E{•',,}=-• = (1 -( ). (102)

Medical Physics, Vol. 28, No. 10, October 2001



2033 J. Yao and I. A. Cunningham: Parallel cascades 2033
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FIG. 8. The cascade fork with amplified point processes. FIG. 9. Illustration of T,(v), the MTF corresponding to reabsorption in the
film-screen system (adapted from Metz and Vyborny).

The cross spectral density following amplification is there-fore given by Eq. (94) as An expression for NPSc(v) is obtained by letting NPS'(v)
fKtq (4 as F, where NPS'(v) denotes the NPS prior to

P TB*( V)[NPSin(v) - ~ the scatter process and 4 is the mean density of Poisson
NPSAB(1)= (1 - q kAkTA)quanta. Using Eq. (A9) gives

(103)(13)NPSc(v) = 0'm 2{[NPS' (v) - 4-']1 TK( v) 1' + q-•

showing that there is correlation between paths A and B only
if quanta in the input image are statistically correlated. That = t/m 2 q' = O2m 2fgq (0 7q, (108)
is, when NPSin( V) - n:0. If the quanta are uncorrelated where TK(v) is the characteristic transfer function describing
and NPSin(V)=q in, the cross term is zero. the reabsorption probability density in terms of spatial fre-

quencies and is equal to the Fourier transform of the reab-
sorption PSF, PK(r). Since quanta in the input image are

2. Cascade fork statistically uncorrelated, the cross terms between paths sepa-

The cascade fork with amplification is shown in Fig. 8 rated by the Bernoulli branch are

where every quantum in the input is selected for both paths A NPSAB(v) = NPSBA(V)= 0,
and B. This again is a special case of the general point se-

lection process described in Fig. 2 where 6, = ý,,= 1, mod- NPSAc(v)=NPSCA(V)=O.

eled as deterministic unit factors. The cross covariance of Bcand , istherforeBased on Eq. (105), the cross terms NPSBC(p) and
and , is therefore

NPSCB(V) can be derived. By noting that the mean gains kV

K6C=E{'•,Z,,}-E{•,,}E{}=O0, (104) and kc for paths B and C are (1 - q/)m andfKipm, respec-
tively, and TB( v) = 1 and Tc( v) =TK( v), we have

and the cross spectral density term for the cascade fork based

on Eq. (94) is given by NPSBC(V)= (1 I V)Om~fKTK(V)'WrVq- (109)

NPSAB(V) =kAkTA(v) TB*( v)NPSin(V), (105) and

which is always nonzero if the input is a random point pro- NPSCB(v) = (1 - )Ofm fKTK(v)q '(7 q. (110)
cess, and therefore there is always a cross term betweenpaths A and B. The sum of two complex conjugates is equal to two times

their real part, giving

NPSBc(v) +NPScB(v) = 2qrn7 co(1 -- 0) im 2fK Re{TK(v)}.
B. Degradation of the NPS due to reabsorption (111)

The NPS in the distribution of optical quanta from each Combining the above-mentioned results gives the NPS for
path in isolation is obtained by cascading appropriate com- the output optical image quanta, including the effect of the
binations of the elementary processes described in Appendix redistribution of light in the screen, as
A. We have NPSo(,)=qm 2 [( 1 -o) +(;o( 1 - ) 2 +S0)fK0f

NPSA(v)=m(l -- qtor q_ (106) + 2
StofKi/(l - )Re{TK(v)}1]To(v)1 2, (112)

NPSB(v)=(l -q.
2m2conq- (107) which is the Metz-Vyborny result.
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Assuming a constant film density (fixed light output qo), q q 77m, (113)
the effect of reabsorption is obtained by considering the NPS
just above and below the K edge. Above the K edge, reab-
sorption takes place, the NPS and q, denoted as NPS+(v) NPS-v)=q-nm 2ITo(v)12  (114)
and Co, are given by Eqs. (112) and (100), respectively.
Below the K edge, both the light output and NPS, denoted as Therefore, the ratio of the NPS just above the K edge to just
q- and NPS-(v), are determined by setting to=0. It fol- below, normalized to fixed total light output, is given by
lows that F(v) where

I
NPS+(v)/•o (1 -.co)+so(1 - )2 +'wfxr/A+2swfKIJ(l - i/)Re{TK(v)}(15

V(•) = NPS_(v)/•o - 1- 4o&(1 fK)(1)

Figure 9 illustrates TK(v) as used by Metz and Vyborny duced. It appears in the first power since it appears in only
for a Dupont Par Speed calcium tungstate screen. The corre- one of two correlated paths.
sponding degradation in the NPS for a constant light output,
F(v), is shown in Fig. 10 obtained using values listed in IV. CONCLUSIONS
Table I. More x rays with energy above the tungsten K edge
interact than below due to an increased interaction coeffi- The DQE is an important indicator of the performance of

cient. This results in a decrease in the NPS ratio at zero medical imaging systems. Recent developments in under-

frequency by approximately 16% (1 to 0.84). At increasing standing noise transfer in medical imaging systems has re-

frequencies, image noise is reduced further, asymptotically sulted in a generalized transfer-theory approach that can be

approaching the uncorrelated high frequency noise ratio of used to describe the DQE and other metrics of system per-

0.76 due to reabsorption. Thus, reabsorption results in both a formance for many imaging systems.

correlated and uncorrelated change in image noise. Reab- As part of a program developing new transfer-theory re-

sorption does not result in an improvement in image quality lationships, we describe how parallel cascades of image-

as the modulation transfer function (MTF) is also degraded. forming processes (quantum gain and scatter) can be incor-

This effect is not discussed in detail in this article as these porated into the transfer-theory approach. Parallel cascades

results are specific to a calcium tungstate screen which has are required when more than one image-forming process
limited use at present. Corresponding results for newer combine to create the final image. It is shown that parallel

screens and other imaging systems can be obtained using the cascades can be used with the introduction of the cross co-

same formalism. The transfer-theory approach is sometimes variance between cascades. A general expression for the

more physically intuitive than a detailed statistical analysis, cross covariance of correlated point processes is developed,
making an interpretation of the results more physically and in particular, the cross covariance of two amplified point

meaningful. For instance, it is clear from this analysis that processes descending from randomly selected quanta in a

the MTF describing reabsorption, Tx(v), appears in the common input image is examined, which has particular im-

cross-spectral density term since light emitted remotely is portance for the analysis of medical imaging systems [Eq.

correlated with light emitted locally when a K x ray is pro- (94) for WSS conditions].

TAts1 E I. Values used to determine F(v) from Metz and Vyborny for a cal-
cium tungstate screen.

Variable Value' Physical meaning

0.95

0.9 1 0.85 Probability that an interacting x ray undergoes a

oo K-shell interaction
(0 0.93 Fluorescent yield of K-shell photoelectric

W0.8U) interactions
a-z 0.75 - - 0.866 Fraction of incident x-ray energy transferred to

0.7 uncorrelated component K x ray, EK IE,

0.65 fK 0.20 Probability that a K x ray is reabsorbed in the
screen, depends on geometry

0 1 2 3 4 5 6 7 8 9 10 EK 59.3 keV Energy of K x ray for tungsten
Spatial Frequency (cycles/mn) E, 68.5 keV Energy of incident x ray, assumed equal to the

tungsten K edge for comparison of results with
Metz and Vyborny

FIG. 10. Illustration of F(v) from Eq. (115), consisting of both correlated
and uncorrelated components (adapted from Metz and Vyborny). 'See Ref 34.
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Under wide-sense stationary conditions, the Fourier trans- which lacks the second term in Eq. (A2).
form of the cross covariance is the cross spectral density For the special case where k represents a binary selection
function. Using it, transfer-theory models can be developed process such as the responsive quantum efficiency of the
to describe the noise power spectrum in imaging systems that radiographic screen, k can have a value of 0 or 1 only, 0
require the use of parallel cascades of image-forming pro- g 1, and o-2=g-( 1 -g-. In this case, it is also possible to
cesses. One example is reabsorption of K x rays in a radio- express signal transfer as
graphic screen. It is shown that the transfer-theory approach
gives the same result obtained by Metz and Vyborny using a qo.t(r) =k qin(r), (A4)
sophisticated statistical analysis when the same assumptions where k is a random variable, qin(r) and qou,(r) are sample
are made. The analytic model allows scientists and engineers functions of the input and output random point processes.
to understand the importance of reabsorption on the DQE in
the design of new systems.

Other examples requiring the use of parallel cascades in- 2. Quantum scatter (relocation)

clude: (a) double-emulsion film-screen systems where light Quantum scatter is a translated point process 33 whereby a
may cross from one emulsion to the other; (b) portal imaging quantum is randomly relocated by a random displacement
systems where high-energy x rays may generate different vector.
kinds of secondary quanta in the detector such as electrons The input to a scatter operation must be a point process,
and light; and, (c) flat-panel active matrix detectors where such as
scattered light may contribute a non-negligible fraction of
the image signal. Extension of the transfer-theory approach N
to include parallel cascades increases the number of theoret- qin(r) = 5 3(r-T,,), (A5)
ical "tools" available to scientists and engineers in the n=l

transfer-theory "tool-box" for the analysis of new digital im- where each delta function represents one quantum at a posi-
aging systems. tion given by the random vector ?,. The output from a scat-

ter operation is given by
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APPENDIX A: ELEMENTARY PROCESSES where p(r) is a point-spread function (PSF) describing the

Modeling of medical x-ray imaging systems requires the distribution of A,. The scatter operator neither creates nor
use of three elementary processes. Under wide-sense station- destroys quanta and hence
ary (WSS) conditions, the elementary processes, and the
transfer properties of signal and noise, are summarized in q--ut qin (A8)
this Appendix. The NPS transfer function through this scatter has been de-

1. Quantum gain and selection scribed by both Rabbani et al.13 and Barrett etal.,19' 20 given

Rabbani et al. 13 and Barrett et al. 19,20 described the trans- by

fer of signal and noise through a stochastic quantum gain 12+i
stage, characterized by a random variable k, which has a NPSOt(v) = [NPSin(iv) - q7,,1 T(v) 1+ (A9)

mean value -and variance O2.2 They showed that the mean where T(v) is the Fourier transform of p(r).
number of quanta per unit area and corresponding NPS are
transferred according to 3. Linear filter (convolution)

q0ug q--,n (A1) The transfer relationships through a linear shift-invariant
filter are described by the convolution integral, given by2

and
dot(r) =p(r)*qin(r), (A10)

NPSout(v.) =j2 NPSin(V) + Ogq2 -in, (A2)

respectively. If k is modeled as a deterministic gain factor, do, tq-•, (All)

Eq. (Al) remains the same, but Eq. (A2) becomes and

NPSout(v) =j2 NPSin(v), (A3) NPSut,(v) =NPSin(v) T(v)12, (A12)
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where an asterisk represents a convolution, p(r) is the im- -
pulse response commonly referred to as the blur PSF normal- NPSab(V) = JKrKa( -)-VTd

ized to unity area, and T(v) is the characteristic transfer

function of the filter, given by the Fourier transform of p(r). J2 Wd"
Unlike the scattering process, the output dout(r) from a linear J.Kba(T)e

filter is not a point process.

= { f. Kba(T)e-j 2 "I1-rcT I
APPENDIX B: STATISTICS OF PARALLEL
PROCESSES ={.F{Kba(T)}}* =NPSb'a(V). (BT)

When two random processes contribute to an output sig- Thus, NPSab(V) and NPSba(v) are conjugate pairs and the

nal, the result is a random process that is the sum of two sum of NPSab(V)+NPSba(V) is always a real value, i.e.,

random processes. For example, consider a stochastic system NPSab( V) + NPSba(v) = 2 Re{NPSab( v)}

described by 3(r)= (r)+b(r). The autocorrelation of the
sum process is39 2 Re{NPSba(V)}, (B8)

where Re{ } denotes the real part of a complex quantity.
Rc(r,r') =E{3'(r)'* (r')}

=E{()+ b'(r)][*(r) + *(r')]} APPENDIX C: LIST OF SYMBOLS

In this artcle, a tilde (e.g., N) indicates a random variable,

both an overline (e.g., q- and angle brackets (e.g., (q)) indi-
cate a mean value, boldface (e.g., r) indicates a vector, and a

=Ra(r,r')+Rb(r,r')+Rab(r,r')+Rba(r,r'), superscript (e.g., A) identifies a particular process or path.

(B 1) Symbol Definition

where an asterisk denotes a complex conjugate. When i7(r) dou(r) A function describing the output from a

and b(r) are both wide-sense stationary (WSS), a(r) is also linear-filter process (cr m-2). It is a regu-
WSS, and the autocorrelation of U(r) in Eq. (B1) can be lar function, and hence a distinction must
written as be made from q(r), which is a general-

ized function describing a distribution of
Rc( i') = Ra( 7) + Rb( 7r) + R~b( i) + Rba( i, (B2) points (see the following).

where T= r- r'. Similar to above, E{ } or An expectation (mean) value.
F{ } The Fourier transform operator.

Kc(T))=Ka(T)+Kb(T)+Kab(T')+Kb,(7) (B3) PA JP Random variables describing the number

and the corresponding NPS of ZF(r) is therefore of secondary quanta produced by quan-
tum amplification processes along paths A

NPS,( v) =.TIK,( Tjor B.
P = ( KAB(r,r') The cross covariance of random point pro-

NPSa(v) + NPSb(v) + NPSb(v) + NPSb,,(v), cesses q4A(r) and qB(r) (mm- 4).

(B4) TV A random variable describing the number
of points in a random point process (num-

where each term in Eq. (B4) is the Fourier transform of the ber of quanta in an image).
corresponding term in Eq. (B3). The terms NPSob(V) and NPSAB(V) The cross spectral density of random point
NPSba(V) are cross spectral densities and reflect the spatial- processes qA(r) and q'B(r) (mm- 2).
frequency dependence of the autocovariance. pd(r,R) Mean distribution of secondary quanta at

By definition of the cross covariance for two random pro- r when a primary quantum is absorbed at
cesses under WSS conditions, we have R (rm- 2).

Kob(') = K (- T). (135) pr 7,(rIN) The conditional probability density func-

a B5tion of the nth quantum in an image,

The cross spectral density NPSab( v) is the Fourier transform evaluated at r, = r for fixed value of N

of Kab(T) given by (rm- 2).
pr{k,,}({R,,}IN) The conditional joint probability density

NPS,,b(v) = F{Kab(T)} =•Kb() e-j2 'd'. (136) function of the ensemble of vectors {R,}
for fixed N, evaluated at {R,J}={R,,}

Substituting Eq. (B5) into Eq. (B6), we have (mm- 2 ).
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( r) A random point process, representing a scribes the distribution density of an event determined by
random spatial distribution of quanta in an both x, and x2 . The marginal probability density functions
image (mm- 2). It is a generalized func- describe the distribution densities of each without regard to
tion consisting of the superposition of one the other:
5 function for each quantum.

qA0(r),qB0 (r) Random subsets of qin(r). That is, an im- pr V ,(x,)= fpr 7 7 ,.2(x1 ,x2 )dx2  (D3)
age consisting of randomly selected
quanta from ýin(r). and

"in A random vector describing the position
of the nth quantum in an image (mm). (D4)

Rn A random vector describing the position pr 72(x2) = jpr X, ,j2(x1 ,x2)dx.I

of the nth quantum input to an amplified
point process (mm). Equations (D3) and (D4) give the relationships between mar-

{yn} An ensemble of random vectors. ginal and joint densities. Similarly, for a set of N random

RAB(r,r') The cross correlation of random point pro- variables, {Y, :n= 1,....N}, the marginal density pr jý,(xn) of
cesses qA(r) and qB(r) (mm- 4). Y,, (n= 1 ... ,N), may be obtained from the joint density

T(v) The Fourier transform of probability den- pr f{7 (x I .... ,XN), as
sity function pr( T) (unitless).

Ank A random vector describing the displace-
ment of the kth secondary quantum pro- pr j.(xn)= dx 1" f" dxi".. dXNPr [&}(x1,-' ,XN).

duced by the nth primary in an amplified
point process (mm). i" (D5)
Binomial random variables (may take val- The property of marginal densities, Eq. (15), allows one to
ues of 0 or I only). exprerthe marginal densi tion ow one to

* The convolution integral operator. express the marginal density function of one random vai-
*s A random point process representing the able, pr i(xn), in terms of N- 1 nested integrals of the joint

random relocation (scatter) of individual probability density function involving all random variables.

quanta according to a specified PSF. Similar to Eq. (D2), if .T=f(x1 ,"" ,XN), the mean of 5
*V The superposition integral operator, may over all N random variables {Y,,} is given by

be shift invariant.
* The correlation integral operator. 7Ey- =E} {f()}

lqin(r) The computation condition for given f x f.
qin(r). = dx'"JdXNf(X1 ,I XN) pr {}(xl ," ,XN).

APPENDIX D: STATISTICAL AVERAGES AND (D6)

MARGINAL PROBABILITY DENSITIES a)lectronlc mail: jyao@iros.rri.on.ca
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Compton scatter in frequency space: a theoretical study*
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ABSTRACT

For x-ray detectors, Compton interactions deposit photon energies along the paths of recoil electrons, which are not
isotropic about the primary interaction sites. Light from each interacting x-ray is only generated near the path of
a recoil electron. In this study, Compton scatter is modeled as an input-labeled cascade of the amplification and
scattering processes to describe the transfer relationship of signal and noise in frequency space. The output of the
model is the spatial distribution of secondary quanta generated by Compton recoil electrons. We determine the spa-
tial dependence and statistical correlation of secondaries from the initial energy of the recoil electron and its range,
resulting in the "Compton" modulation transfer function (MTF) and noise power spectrum (NPS), respectively.
Then the "Compton" MTF and NPS are used to calculate the "Compton" detective quantum efficiency (DQE). The
probability density function of scattering angle of Compton recoil electron is developed using the Klein-Nishina coef-
ficients. Results are applied to the description of a portal imaging system at 6 MV where non-Compton interactions
can be ignored. The MTF results are compared with a Monte Carlo calculation. This is the first model of how
Compton interactions in the metal-plate/phosphor combination degrade image quality in terms of signal and noise.
It is shown that Compton MTF depends on energy of x-ray photon in a complex way, and Compton scatter imposes
a fundamental limitation on both the MTF and DQE of x-ray imaging system.

Keywords: Compton scatter, input-labeled model, modulation transfer function, noise power spectrum, detective
quantum efficiency, portal imaging system

1. INTRODUCTION

The modulation transfer function (MTF) describes signal transfer in the Fourier domain, while the noise power
spectrum (NPS) is an important measure of image noise.1' 2 Both the MTF and NPS are required to predict the
detective quantum efficiency (DQE) and other metrics of system performance. Although calculations of the NPS and
DQE based on experimental data are useful measures of image quality and system performance, theoretical models
describing signal and noise transfer are required to identify key factors of system design that limit image quality.
In addition, theoretical predictions of the DQE can be used as benchmarks for comparison with measured values to
determine how well a particular system is performing.

In x-ray imaging, the spatial dependence and statistical correlation of how radiation energy is deposited have

a strong influence on the MTF and NPS. This in turn depends on the physics of x-ray interactions. For instance,
photoelectric interactions in a phosphor result in isotropic clusters of optical quanta centered at the interaction sites
in the imaging, if the phosphor is considered to be homogeneous and reabsorption is ignored. Compton interactions
differ as most photon energy is transferred to secondary electrons along the path of the Compton recoil electron,
which is not isotropic about the primary interaction site. Thus, light from each interacting x-ray is generated near
the path of a recoil electron. The asymmetric clusters of light quanta due to Compton scatters affect image quality.
This is one of several reasons why therapy image quality, primarily due to Compton interactions, is poorer than
diagnostic image quality.

The purpose of this article is to develop a Fourier model of the influence of Compton scatter on signal and noise

transfer. We ignore the effect of the scattered photon in Compton interaction and only consider the contribution of
the recoil electron. This is a reasonable assumption for "thin" detectors where multiple interactions of the scattered
photon are unlikely, and is appropriate for the portal imaging system. The other simplifying assumption for "thin"
detectors is made in which the multiple scattering of recoil electron is ignored and the path of recoil electron is a
straight line along which the secondary ionizations are independently generated. This assumption could be removed

1.Yao and I.A. Cunningham, "Compton scatter in frequency space," Medical Imaging 2002: Physics of Medical Imaging, Eds.
L. Antonuk and M.J. Yaffe, Proceedings of the SPIE 4682: 471-482 (2002)
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Figure 1. Compton interaction of an x-ray photon of energy by with a free electron. The scattered photon has
energy hv' and angle ¢, while the recoil electron departs with kinetic energy Ek at polar angle 9. (a) Cross-sectional
view. (b) View from thle perspective of the incident photon.

by incorporating a more sophisticated model of electron transport, such as described by Fermi-Eyges small-angle
multiple scattering theory.3' 4

The generation of secondary ionizations in Compton interaction is represented as the combination of a quantum
gain process (conversion of x-ray photon to secondary ionizations) and a quantum scatter (random positioning of
secondary ionizations along the path of the recoil electron). Since both the conversion mean gain value and scatter
point-spread function (PSF) are dependent on the recoil electron path length and direction, and these in turn are
functions of the energy of the interacting photon, the cascade used is referred to be "input labeled", shown to be a
generalization of earlier work by Van Metter and Rabbani.5 The result is a description of Compton scatter inl the
Fourier domain labeled by the scattering angle of recoil electron. We derive the probability density function (PDF)
of scattering angle of recoil electron using Klein-Nishina cross section. This leads to averaging thle MTF and NPS
through Compton process over random angle of recoil electron for each incident photon energy.

The terms "Compton MTF" and "Compton NPS" will be used to represent the MTF and NPS of secondary
electrons liberated by the Compton process. Thle system MTF and NPS may be further degraded by additional pro-
cesses such as light scatter in the phosphor. While the DQE is generally used to describe overall system performance,
we use the term "Compton DQE" to describe the DQE assuming no further degradation subsequent to the Compton
scatter. Thus, it represents the best possible DQE that be obtained. Tihe results are applied to the description of
a portal imaging system at 6 MV for which non-Compton interactions can be ignored. Analytic expressions for the
Compton MTF, NPS and DQE are given as functions of incident x-ray energy. The MTF results are compared with

a Monte Carlo calculation.

Throughout the following description, we use a notation where the bold face (eg. r) indicates a vector, overhead
tilde (eg. 9) indicates a random variable and overline (eg. •) indicates a mean value.

2. THEORY

2.1. Compton Scatter

Figure 1 illustrates a Compton interaction fin which an x-ray photon of energy hiv collides with a free electron. Thle
scattered photon has energy bh' and angle ¢ relative to the incident photon's direction. The recoil electron departs
with kinetic energy Ek at polar angle 9. It may be shown fr'om the kinematics of Compton interactions 6 that Ek is
related to 9 by

2a cot 2 0
Ek = hv. (1+ )2 + (1 + 2i) cot 2 0' (1)

where Q• = hv/moc2 is the ratio of the incident photon energy to the electron rest energy (moc2 
= 0.511 MeV).

Figure. 1 (b) shows the same interaction from the perspective of the incident photon, where ,y denotes the azimuthal
angle of the recoil electron. The recoil electron and scattered photon travel in opposite directions in this plane due

to conservation of energy and momentum.

Compton scatter is represented as a random process, expressed in terms of the three random angles ¢, 9 and ").
For each interaction with a free electron, the PDF of the recoil electron angle 9 is derived in Appendix A Using the
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Figure 2. The PDF pr(0() of the recoil electron scatter angle for interactions with free electrons over a range of
photon energies up to 10 MeV.

Klein-Nishina cross section, 7 giving

22 cot (1+ cot 2 0)F

pr() r~(+a (1l ) 2 +ct 2eF )(2

and 1 1 (1+v ) 4 +cot 4 8 2a 2 cot4  (3)

F)=[(l+a)2+(1+2o)cot28]2S1(l+oa)2+cot2± (1±o)2+(l+2a)cot28 '(3

where a is tihe Klein-Nishina cross section and r0 denotes the classical electron radius (2.81794 x 10-13 cm). 7 The
PDF pr0(8) is illustrated in Fig. 2 for photon energies between 1 KeV and 10 KeV. At lower energies, the PDF curve
is flatter, which means that the angular distribution tends to be more uniform. With increasing photon energy, the
recoil electron tends to be more forward peaked.

In general, the electron scattering cross section is independent of the recoil electron azimuthal angle. The
azimuthal angle 3' is uniformly distributed over all angles from 0 to 2ir, and hence the PDF is given by

1
prs(y) = (4)

independent of energy and other random variables.

2.2. Theoretical Representation of Compton Scatter

A cascaded approach5 '8'9 is used to describe Compton scatter so that the results can be incorporated into more com-
plex models of system operation. As illustrated in Fig. 3, the "input" is a spatial distribution of points representing
the Compton interaction sites in an image. The output is a spatial distribution of secondary ionizations generated
by thle recoil electrons. This model describes the conversion from a distribution of Compton events to a distribution
of secondary electrons along the paths of recoil electrons.

For the nth Compton event, the recoil electron has polar and azimuthal angles given by random variables 0n

and '•,•. In travelling through the detector, the recoil electron ionizes along its path until it is stopped or escapes
the detector. As a result of electron transport, we use •,Sn 3'y), shortened to .q, for simplicity, to denote the total
mean number of secondary electrons distributed along the path of the nth recoil electron, and the random vector
'5- to describe the displacement of each secondary electron with respect to the Compton interaction site. The PDF
pr÷ (r-08,, "yn), shortened to pr÷ (Tin), therefore describes the probability per unit area of a secondary being produced
at i- in the image plane. It is equivalent to the normalized PSF for fixed 8n. and 3',. Conversion from thle recoil
electron to secondaries is thusly represented as a cascade of an amplification and scatter stage. However, these two
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Figure 3. Cascade model used to illustrate the production of Secondary quanta by the recoil electron for Compton

Scatter. The mean gain and scattering PSF are input labeled.

random processes are not independent since both the mean gain and scatter PSF are themselves random, dependent
on 0,, and in, (and therefore on hv). Van Metter and Rabbani5 have shown that dependent processes like these must
he described as a pair. The model illustrated in Fig. 3 may be refereed to as "input labeled".

Based on the model shown in Fig. 3, we define a shift-invariant function pc(T) as

describing the mean number of secondaries per unit area at distance r from a Compton event, in which (()) denotes
an average over both 0,, and 5i,- The Compton PSF is given by pc(r) normalized to unity, i.e.,

psf•(r) = ((•,,pr÷(r[n))) (6)

Calculating the Compton PSF for any specified system and geometry therefore requires knowledge of only the two
functions gn, and pr÷(r~n) in addition to the PDFs for 0 and 0.

The system characteristic function Sc(v), equal to the Fourier transform of pc(T), is given by

&()= .F2{po(r)} = ((p,,T,(v))), (7)

where .F2 { } denotes the two-dimensional Fourier transform operator and Tn,(v) is thle Fourier transform of pr+ (rin)
for fixed 0n, and yn. The Compton MTF can be expressed as the normalized system characteristic function,

MTF(u) - .<nnv) (8)
<((.n))

Van Metter and Rabbani5 considered a dependent pair" of gain and scatter processes where the mean gain and
PSF are labeled by a single random variable (i.e. random label), and describe transfer of the NPS through this
random-labelled model. In Fig. 3, two random variables 0,, and in, are applied to label the mean gain and PSF.
Since 0n, is independent of i',, it is straightforward to extend the results inl Ref. 5 by changing the average over one

label into double, giving the Compton NPS as

NPS(v) =[NPSi,,(v) - •i.] I((.0nT,(v)))1 2 ± q•-n((gn~ + n)ITn(V)I 2)) + +a•-qi<g, (9)

where qii is the average density of Compton events. Since Compton events are uncorrelated and Poisson distributed,
NPSi,,(v) = qin,. In addition, production of secondaries is a random process and the conversion gain gn almost
certainly obeys Poisson distribution so that p,• ,. The Compton NPS may be therefore simplified further to

NPS(v) = qin ,(gn[ -2Tn(v) 2)) + ,,in((p,,) ). (10)
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Figure 4. Illustration of the quantum efficiency of photoelectric effect, Compton scatter an pair production in 1 mm
of Cu. Compton scatter is the dominant interaction between approximately photon energies 0.3 and 4 MeV.

The Compton NPS thus has two significant terms: a correlated noise term proportional to a weighted average of

IT,(v)l2 and an uncorrelated noise term independent of frequency.

The Compton DQE can be calculated in terms of the Compton MTF and NPS. By definition,2 the DQE is
expressed as

DOE(L) = in [((gn,))MTF(V')12 
(1

NPS(v)

Combining Eqs. (8), (10) and (11) gives the Compton DQE as

DQE(v) = ((2 lT.(V)2 )) + (()] . (12)

Equations (8), (10) and (12) describe the "Compton" MTF, NPS and DQE for a combination of random variables
required to describe the recoil electron path. They are general results describing how signal and noise are transferred
through Compton scatter in a thin detector. In the next section, these results are applied to the description of a

portal imaging system in which most interactions are due to Compton scatter.

3. APPLICATION TO A FLAT-PANEL PORTAL-IMAGING SYSTEM

Imaging systems designed for use with mega-voltage x rays generally use a metal plate bonded to a scintillating
phosphor. Incident x-rays interact primarily in the metal plate. Figure 4 illustrates the probability of a photoelectric
interaction, Compton scatter and pair production in a 1-mm copper plate. 7  Compton scatter is the dominant
interaction between photon energies of approximately 0.3 and 4 MeV, coinciding with most of the spectrum of a

6-MV therapy beam. In this section, we describe the influence of energy deposited by Compton scatter on the MTF,
NPS and DQE for a flat-panel portal-imaging system at 6 MV.

3.1. Model description

Recoil electrons generated in the metal plate travel towards a scintillating phosphor as illustrated in Fig. 5. We
ignore the effect of variations in interaction depths and assume all interactions occur in the middle of the plate. In

Fig. 5, each interacting high-energy x-ray photon ejects one recoil electron from the metal plate. The recoil electron
departs from the interaction site at polar angle 0. and is assumed to travel along a straight line through the phosphor.
Figure 5b illustrates the image-plane view, where line segments represent the projected recoil-electron paths in the
phosphor. The nth Compton interaction at position R,, in the image plane results in the non-isotropic distribution
of secondaries along the line segment ab.
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Figure 5. Illustration of the generation of secondaries along the path of the Compton recoil electron, assumed to
be a straight line. (a) Cross-sectional view; (b) Image-plane view.

For thle given incident photon energy hv, and scattering angle On~, the kinetic energy Ek of a recoil electron is
determined by Eq. (1). Then from the range of electron with Ek and the passing length t1 /2 x seecOn, where t1 /2 is
the half thickness of thle metal plate, we may calculate the lost energy of the recoil electron in the metal plate, and
give the initial energy Ea of the recoil electron in the phosphor. 7 This calculation can be done, for any fixed kinetic
energy, by interpolation of the range data for electron tabulated in Ref. 10. Note that if Ek is very small or On is
large enough, thle recoil electron has insufficient energy to exit the metal plate and does not contribute the imaging.
The path length of a recoil electron with initial energy Fa in the phosphor, denoted by lab, is expressed as7

(g) X (13)
ka =R m2 p P(g/cm3 )'

where R is the range for electron with initial energy Ea and p is the density of thle phosphor. If the recoil electron has
sufficient remaining energy to exit the phosphor, then 'ab -= t2 sec 0,•, where t2 is the thickness of the phosphor. Due
to geometric consideration, the length of ab is given by b - a = lab sin On, and the direction depends on the azimuthal
angle Yn'

This article describes only the production of secondary ionizations in the phosphor. Conversion by Compton
scatter to secondaries in the phosphor is represented by the input-labeled model as shown in Fig. 3. Additional
stages are required to describe conversion to light and scatter in the phosphor, but are not considered here.

We use thle continuous slowing down approximation of the energy deposition and assume secondaries are generated
with uniform probability along the recoil-electron path. Letting go be the average number of secondary quanta per
unit length, thle average number of secondary quanta generated along thle path lab is expressed as

gn= go ×ab (14)

Note that gn~ only depends on lab (and therefore on On), and is independent of the angle %Yn. In Fig. 5, the one-
dimensional random variable Ank describes the position of the kth secondary due to the nth Compton event in tihe
image plane, thus the corresponding P DF prA (AI0n) extends with a value 1/(b-a) between a and b only as illustrated
in Fig. 6. In the following discussion, Compton metrics are expressed in terms of prA(AI0fl).

3.2. Compton Metrics
The distribution of secondaries along the straight line between a and b is described by the 1-D PDF, prA(AI~n).
The 2-D PDF describing the distribution of secondaries in the image can be derived by the transformation of polar
variables into Cartesian and using the fundamental transformation theorem' 1 of random variables, giving

pr.-(Q']On,'ya) = lprA(aIOnl)5(y - 'yr) (15)
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Figure 6. Illustration of the 1-D PDF prk(A 0,,), describing the distribution of secondaries along the recoil electron
path.

for fixed 0n, and -y. pr (-(rI0,,, -y,) is not circularly symmetric in the image plane as the secondaries are distributed
only along a straight line. Averaging this PDF over ý,, results in

(pr•-('rIOn, "yn))5, = (pr-( -yOnw)pr (-y.n) d'-n

1 [o2w 1

f- 2 prA (AIO.,,)6( --y.)d-yn = 2 A---prA(A10n). (16)

Since A = Ji-I, we can rewrite Eq. (16) as a circularly symmetric function pi(rlOn), i.e.,
1

Pi(TOn) - (prt.(rIOn,'yn))5, = 21 plrA(-rOIn). (17)

The function P, (7-10n) describes the distribution density of secondaries, conditional on having a recoil angle 0, in the
Compton interaction. Using Eq. (6) and including the quantum efficiency q of a Compton interaction, the Compton
PSF is therefore given by averaging over kn,

psfc(r) = (•ln ("rIOn))O• - (•npi('rIOn))g
( ) () . (18)

The Compton MTF is the 2-D Fourier transform of psf,(i-), giving

MTF(v) = ( ) (19)

where T1 (v'lOn) is the Fourier transform of pi ('rlOn) and is given in Appendix B. Substituting Eq. (14) into Eq. (19)
and calculating the average over bn, we have the Compton MTF given by

MTF /o j lab TI(v10n,) pro(On) dO(2MTF(v) = 0 (20)

jo lab pro(O ) don

The Compton NPS in Eq. (10) can be written as

NPS(v) = ),) + qi(.in)

= r7qi-.(gT 2(VjOn)) + 17 6]•in(gn)n, (21)
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Table 1. Values used to determine the Compton MTF, NPS and DQE of a Lanex Regular detector for portal

imaging at 6 MV.

Variable Value Physical Meaning

t, 1 mm copper plate thickness

t2 0.192 mm scintillating phosphor thickness

p 3.72 g/cm 3  density of phosphor

go 1.244 x 105 quanta/mm average number of secondaries per unit length in phosphor

qin 3.46 x 106 quanta/mm 2  average number of incident x-ray

where the averaging IT,(v)I2 over •n has been defined by the function T2(vIOn) for brevity. T2 (vlO,), derived in

Appendix C for the uniform PDF prk(AIOnl), can be expressed as the 2-D Fourier transform of a circularly symmetric
function p2(T On) defined by 1

P2( IOn) -) [prA(IrJlO,l) * prA(IrIIOn)], (22)

where * denotes the spatial correlation-integral operator. The function p2 (-rlO,) describes the statistical correlation
in the distribution of secondaries due to a Compton scatter (described by 0,). When the spatial distant of two

secondaries is approximately equal to the projected range b - a of the recoil electron, the correlation drops to zero.

Similar to Eq. (20), the Compton NP.S is expressed as

NPS(v) = T•] j [gq. ab T 2 (VIO-) +golab] prO(0n)dOn. (23)

Finally, the Compton DQE can be expressed as

DQE(v ) (24)o0 ý lab T2( L0) + lab] pr6(0) dO

Equations (20), (23) and (24) give the Compton MTF, NPS and DQE, in terms of the uniform distribution of

secondary quanta along a recoil-electron path for a flat-panel portal-imaging system.

3.3. Results

Results are applied to the description of a Lanex Regular detector for portal imaging at 6 MeV. The Compton MTF,
NPS and DQE are obtained from numerical evaluations of Eqs. (20), (23) and (24) respectively, and using values
listed in Table 1.

Figure 7 shows the results of Compton MTF for photon energies of 1.5, 2, 4, 6 MeV. For comparison, we also show
the secondary radiation MTF obtained by a Monte Carlo simulation (El-Mohri et al.12 ). There are some difference
between our result and Monte Carlo result at low spatial frequency, while our result is in agreement with Monte
Carlo study at high spatial frequency. The reason for this difference is thought to be one assumption that the path
of the recoil electron is a straight line in the phosphor.

Figure 8 shows the results of Compton NPS. For photon energy of 1.5 MeV, most kinetic energy of recoil electron
is absorbed in copper plate and does not contribute the imaging. Corresponding, the NPS is smaller. For photon

energy of 2 Mev, the NPS has approximately the maximum value. With an increase in photon energy, the NPS
becomes smaller.

Figure 9 shows results for the Compton DQE. At zero spatial frequency, the DQEs have different values for photon

energies due to both an energy dependent quantum efficiency and average conversion gain due to energy dependent

recoil electron path length in the phosphor. The DQE falls to a small value near 2 cycles/mm for all energies.
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Figure 7. The MTF corresponding to Compton scatter for incident photon energies between 1.5 and 6 MeV, and

by a Monte Carlo simulation quoted from Ref. 12.
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Figure 8. The NPS corresponding to Compton scatter Figure 9. The DQE corresponding to Compton scat-
for incident photon energies between 1.5 and 6 MeV. ter for incident photon energies between 1.5 and 6 MeV.

4. CONCLUSIONS

In this study it has been shown that conversion of x-ray energy to secondary ionizations due to Compton scatter
carl be described by an input-labeled cascade of the amplification and scattering processes. Although Monte Carlo
techniques have been developed and used for particular system designs where only Compton scatter is significant, this
is the first model of how Compton interactions in the metal-plate/phosphor combination degrade image quality in
terms of signal and noise. Based on the analysis of Compton scatter and the transfer model developed in this study,

the expressions of the Compton MTF, NPS and DQE are derived. It is shown that Compton MTF depends on energy
of x-ray photon in a complex way, and Compton scatter imposes a fundamental limitation on both the MTF and
DQE of x-ray imaging system, consistent with experimental and Monte Carlo observations. Use of analytic model

obtained with the transfer-theory analysis provides additional insight into the physical reasons for these limitations.

APPENDIX A. PROBABILITY DENSITY FUNCTION OF SCATTERING ANGLE 0

In this appendix, the probability density functions (PDF) of 9 is derived, representing the mean probability per
radian of scatter occurring with that angle.

We denote by A the event of a Compton interaction occurring when a single photon impinges on a layer of medium
of thickness Az electrons per square. The probability of event A may be evaluated using the total Klein-Nishina
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cross section o',7 i.e., P(A) = a (cm 2/el) x Az (el/cm 2). 
(25)

Denote by B the event of a recoil electron scattered into the cone contained between 0 and 0. The probability of B
due to Compton scatter is therefore given by the conditional probability P(B IA). It is obvious that the PDF pr6(0)
for the recoil electron is the PDF of the event B assuming A, given by the derivative of P(BIA) with respect to 0,
i.e., prf(O) = dP(B[A)/d0. By definitionn1

P(I)-P(BA) (26)
P(BA)P(IlA) - P(A) (6

The joint probability P(BA) can be interpreted as a probability line massi1 on the event of Compton interaction,
giving the probability of a Compton event producing a recoil electron between angles 0 and 0. It can be obtained
from the Klein-Nishina equation. 7

If the scattered photon angle ¢ is known for a given Compton interaction, then the recoil electron angle 6 is
determined by6

cot 0 = (1 + a) tan(-). (27)
2

Thus, the corresponding Klein-Nishina equation on the scattering angle 0 of a recoil electron may be expressed as

do,_ 8r 27(l + a)2 cot 0(1 + cot 2 0) (28)
dO =(1 + a)2 + cot 2 0F(6)(

and
F(O)1 (1 + ,)4 + cot 4 0 2a2 cot 4 0 (29)

[(1 +a)2 + (+2a) cot 2 0]2  (l+9)2+cot 0 + (1+a) 2  +2a) cot20 "

where r0 denotes the classical electron radius (2.81794 x 10- 1 cm). da/ dO gives the "Compton fraction" of recoil
electron that is scattered into the cone contained between 0 and 0 + do. Consequently,

P(AB) = Az dO, (30)

which results in that
P(AB) _ 1 0 da

P(B•iA)-=P(A) -a] - dO. (31)

Based on the above results, we obtain

dP(BIA) 8r ,2 cot (1 + cot2 0)FO"

8r1dO o (1+a)2 (32)

where F(0) is given by Eq. (29).

APPENDIX B. FUNCTION Tl(v[1)

The function T1(vI0) is the 2-D Fourier transform of pl(rI0) defined in Eq. (17). For the uniform PDF prA(AIO6) as
shown in Fig. 6, pl(rI6) is given by

{ 1 1 a<Ir

pl(-rlo.) b 2cr b- a(33)
0 otherwise

Since P1 (r-10I) is circularly symmetric, Tl(vI6n) can be expressed as the Hankel transform of p1(irJ0n),'a giving

Tl(vlOn) = 27r p1(rIOn)Jo(27FvT)TdT, (34)

where T = I[r- and Jo(2lrvT) is the zero-order Bessel function of the first kind.i 4 Substituting Eq. (33) into Eq. (34),
we have

Tl(VIOn) b--Jo(27rvT) dT. (35)
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APPENDIX C. FUNCTION T2 (vO)

In this appendix, the average of ITn(v)I 2 over ýn, defined as the function T2 (vI0n), is determined where Tn(v) is the
2-D Fourier transform of pr÷(rjn) given by Eq. (15). Calculating the 2-D Fourier transform of pr{(rjn) in polar
coordinates, we obtain

= pr£k(710n) e-j27rvT cos('Y,•-0) dT, (36)

where v and f3 is the magnitude and angular components in the frequency domain, and T = 1T-. The modulus of
Tn(v) may be expressed in terms of the product of its conjugate pairs, giving

ITn(V)I 2 = Tn(v)Tn,(v) = j prk(T0,n) prA(T'lOn) e-j27(r-'')cos(--0) dT dT'. (37)

Since "n is a random angle with the uniform PDF pr•, (-y,,) = 1/27, the average of ITn(v)12 over "n, is

T2(VIOn) (ITn(v)1 2), = 2 1 j ITnQ(V)1 2 d"yn

S prr,(TIOn) prA(T'IOf) e-j2rv(r-') cos(_-" )dn dTrdT'27r or o V

= j r prA(TI,) prA(T'IOn)Jo[2v(T - •r')] dT dr' (38)

where Jo( ) is the zero-order Bessel function of the first kind.14 Performing the change of variables T" = T- - T in
the 7- integral for Eq. (38) yields

T2 (VOn) = 21 [prA(v"0rn) * prk(T"IOn)] Jo(27rvT") dr", (39)

where * is the spatial correlation-integral operator. If we define a circularly symmetric function p2 (QrjO,,) such that
1

P2( IOn) =- 1 [prA(jrIOf)* prA(IrII0ln)], (40)

then Eq. (39) is recognized as the 2-D Fourier transform of P 2 (r I O), expressed as the form of the Hankel transform.
Therefore, T2 (vIOn) and p2 ('I 0n) are the Fourier transform pair.

For the uniform PDF prA(AIQ,) as shown in Fig. 6, we obtain the expression of p2(rI9n) given by

l1 (b-a-I17) 0< In <b-a (41)p2(7r10n) = 7rj-r[(b - a)2 -(41)

0 otherwise

Similar to the calculation of T 1 (vIO) shown in Appendix B, we can obtain

1 27rT(b-a) }
T2 (7-I0,) = 7FT(b- a) { JO(T) dT - 11 [21v(b - a)] (42)

where the function J, ( ) is the first-order Bessel function of the first kind.14
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ABSTRACT

Theoretical models of the detective quantum efficiency (DQE) provide insight into fundamental perfor-
mance limitations and standards to which particular systems can be compared. Over the past several
years, cascaded models have been developed to describe the DQE of several flat panel detectors. This
article summarizes the governing principles of cascaded models, and conditions that must be satisfied to
prevent misuse. It is shown how to incorporate: a) poly-energetic x rays; b) Swank noise; c) the Lubberts
effect; d) reabsorption of K x rays from photo-electric interactions; e) secondary quantum noise; and,
f) noise aliasing.

Cascaded models involve cascading theoretical expressions of the noise-power spectrum (NPS) through
multiple stages. Most expressions involve two or three terms, requiring the manipulation of algebraic ex-
pressions consisting of hundreds of terms. This practical limitation is alleviated using MATLAB's Simulink
programming environment and symbolic math manipulations. It is shown that even for an "indirect" de-

tector, noise aliasing reduces the DQE by up to 50% at the cut-off frequency. Secondary quantum noise
is generally a small effect, but reabsorption can reduce the DQE by 20-25% over a wide range of spatial
frequencies.

Key words: flat panel detectors, cascaded models, noise power spectrum, detective quantum efficiency

1. INTRODUCTION

Medical x-ray imaging systems must be designed to ensure that maximum image quality is obtained for a
specified radiation dose to the patient, and quality assurance programs are used to ensure these standards

are maintained. The view that an imaging system must faithfully transfer the input image signal to the
output suggests the use of principles used in the study of communications theory, and in particular, the
Fourier-transform linear-systems approach.1 Linear-systems theory was initially applied in the imaging
sciences by Rossmann and co-workers, 2,3 including use of the modulation-transfer function (MTF) and

related concepts. General works have subsequently been published by Dainty & Shaw, Gaskill,5 Papoulis,6

Doi, Rossmann and Haus, 7 Metz and Doi,8 and many others. Possibly the most extensive use of linear-
systems theory in the medical imaging field is by Barrett and Swindell9 who use this approach to describe

fundamental principles and characteristics of many imaging systems in radiography, computed tomography
(CT), nuclear medicine, ultrasound and other areas.

Cascaded models describing the transfer of quantum-based images have gained popularity recently and
have been used successfully to develop theoretical models of the DQE of various flat-panel detectors. This
article summarizes how these models have been used, some caveats, and how they can be used to develop
more sophistical models of new detector designs.

I.A. Cunningham, J. Yao and V. Subotic, "Cascaded models and the DQE of flat-panel imagers: noise aliasing, secondary
quantum noise and reabsorption," L.E. Antonuk and M.J. Yaffe Eds., Proc of SPIE 4682: 61-72 (2002)
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2. GOVERNING PRINCIPLES OF CASCADED MODELS

Block diagrams are useful as graphical representations of cascaded models. They illustrate the logical
sequence of events that connect the input to output as required to represent the physical operation of an
imaging system. Each block represents a particular process with known input and output relationships,
such as conversion from x rays to light, or the scattering of that light in a screen.

2.1. Point Processes

Some elementary processes are summarized below. They consist of two types. Point processes'0 are
necessary to describe quantum-based processes. Both the input and output of each point process must
necessarily be a spatial distribution (ie. an "image") of points, represented as the random function q(r) here.

The overhead tilde is used to indicate a random variable, characterized in terms of a mean distribution q
and either the autocorrelation function K(r) in the spatial domain, or the Wiener (noise-power) spectrum
NPS(k) in the spatial-frequency domain (see assumptions below), describing second-order statistics of this
distribution. The mean q has dimension area-1, such as the mean number of quanta/mm2 in an image.
The NPS of a point distribution has the same units as the distribution, such as mm- 2 .

It is critical that each point distribution be rigourously and unambiguously defined, both in terms of
what each point represents, and the mean and NPS. Failure to do so is the primary cause of misuse of the
cascaded approach. A point distribution 4(r) can always be represented in terms of a spatial distribution
of impulse functions, such as the Dirac function 6(r):

g(r) -- Z 3(r - ii) (1)
i=I

where each 6 function represents one point (one quantum) in the distribution (the image), N is a random
variable describing the total number of points and ri is a random vector describing the spatial position
of the ith point. Each 3 function in this example has units mm-2. They are generalized functions and
distribution theory"l must be used to describe the distributions.

2.2. Non Point Processes

Other processes are non point processes. The input may be a point process or not, but the output is always
a regular random function, such as d(r). The output units are specific to the model used. An example
of such a process is the integration of quanta in a detector element represented as a convolution integral,
where the output d(r) represents the (unitless) presampling detector output (described below).

2.3. Assumptions

Several assumptions are implicit in the linear-systems cascaded approach.

1. The first assumption is that the system be linear (or linearizable). This implies that the mean output

signal is proportional to the mean input signal. That is, qout ox qin. If this is true for each process,
it is also true for the overall system response.

2. Each process must be shift invariant. In practice, this generally means that cascaded models do not
describe edge effects properly. Aliasing in digital systems may result in a non shift-invariant response.

3. While the positions of points in a distribution may be statistically correlated, the interactions of any
point must be independent of all other points. Thus, a particular quantum in an image undergoing
a particular interaction in a detector has no bearing on what other quanta will do.
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4. All noise processes must be wide-sense stationary (WSS) or wide-sense cyclostationary (WSCS).

Wide-sense stationarity11 means the mean and autocovariance are the same in all regions of the
image. This is generally violated near image edges, and in addition is only applicable for low-contrast,

uniform-exposure conditions. Wide-sense cyclostationarity1l means the mean and autocovariance are
periodic in an image, required for the description of digital imaging systems.

3. ELEMENTARY POINT PROCESSES

The most commonly used elementary processes were first described by Rabbani, Shaw and Van Metter.1 2

A brief summary is given here for completeness. These are stochastic linear processes, linear in terms of

the mean response.

3.1. Quantum Gain

Quantum gain corresponds to an increase or decrease in the number of points in the point distribution.
Both the input and output are necessarily point processes. Examples include conversion of x-ray quanta

to optical quanta in a radiographic screen, where each input quantum is converted to § output quanta and
Sis a random variable with mean D and variance o-ý, but does not include the scattering of light quanta.
A point process is called marked if it has overlapping points and orderly if it does not.

It is assumed that each conversion is independent of all others, and only one random variable j is used

to describe all conversions. For the radiographic screen, this requires that all incident x ray quanta have
the same energy and the system response to each quantum must be the same.

Quantum gain can be expressed as a random process as

ot(r) = j 4jn(r) (2)

where the mean density of points in each distribution are related by

qout = g qin. (3)

Rabbani, Shaw and Van Metter12 described noise transfer through this gain stage, giving

NPSout(k) = P2NPSin(k) + a2qin (4)

expressed in terms of the two-dimensional spatial-frequency vector k. This result consists of two terms.
The second term is always independent of frequency (extending to "infinite" frequency), and represents
uncorrelated image noise. Thus, the output of a quantum gain process is never band-limited and always

contains an uncorrelated component.

3.2. Quantum Selection

Quantum selection is a special case of quantum gain in which j is a Bernoulli random variablet that can

assume sample values of 0 or 1 only. That is, each quantum in the input is either transferred (probability
g), or not (probability 1 - j), to the output where 0 _< g -< 1. Examples include the quantum efficiency

of a radiographic screen, and Fig. (1) illustrates a sparse quantum image qin(r) being passed through a
quantum selection process with g = 0.5.

The variance o, ris given by 9 =[I[
2) _ (p) 2, and since j can take values of 0 or 1 only,

2 - g - (5)

tA Bernoulli RV can have only two possible values, such as 1 or 0. The toss of a coin can be represented in terms of a

Bernoulli RV.
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Input Output

Figure 1. Illustration of the quantum selection process. In this example, half of the points in the input
image (qin(r), left) are transferred to the output image (qout(r), right).

o ot

a o . 0& o o -

8 2

Figure 2. In a scatter process, image quanta are relocated by a random displacement with a probability
given by the scatter PSF. Open circles represent initial positions, solid circles represent locations after
being scattered. Some quanta near the edges have been scattered out of the displayed image area.

The quantum selection process can thus be characterized solely in terms of the probability g. Noise transfer
through the process is given by

NPSo,,t(k) = D2 [NPSi.(k) - qin] + gqp,. (6)

The component NPSi,(k) - qin is called the correlated noise component of the input, and qin is called the
uncorrelated component. It is sometimes said that the correlated component is "passed through" y2 in keep-
ing with the idea of a transfer model, while the uncorrelated component is passed though ý. A significant
correlated component necessarily exists in the input distribution of quanta when NPSin(k) »> qi,. When
the input quanta are uncorrelated, such as with a distribution of incident x rays, then NPSin(k) = qi-,
corresponding to the smallest value that NPSi (k) can have, and NPSot(k) = qi.

3.3. Quantum Scatter

Most image-blurring processes, such as blur caused by the scattering of optical quanta in a radiographic
screen, are quantum-scattering processes. That is, each quantum is randomly relocated to a new position
with a probability described by the normalized PSF of the blur as illustrated by Fig. 2. This differs from
the blur described by a linear filter (described below) which can be viewed as a redistribution of signal
by weights as described by the convolution integral, while scatter must be viewed as a redistribution by
probabilities. This distinction has been recognized for some time, but noise transfer relationships were first
described by Rabbani, Shaw and Van Metter,12 and more recently using point-process theory by Barrett
et al. 13

The output of a scatter stage is always a point process and can be written as

=loset (r) --- din(r) *, psf(r) (7)
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Figure 3. Conversion of input quanta into a cluster of secondary quanta can be represented by cascading

a gain and scatter stage. Input quanta (left) are uncorrelated in this example, but the resulting output

secondary quanta are correlated (right).

where psf(r) is the scatter PSF normalized to unity and *, represents the scatter operator. Rabbani et

al.12 showed that q and NPS(k) are transferred through a scatter process according to

qout = qin (8)

and
NPSo•±(k) = [NPSin(k) - qin] IMTF(k)12 + qin, (9)

where MTF(k) is the modulus of the Fourier transform of the scatter PSF. Unlike the linear filter

(Eq. 13), only the correlated noise component is passed through the squared scatter MTF. The frequency-
independent uncorrelated component is passed unchanged.

3.4. Cascading Point Processes

More complex processes can often be represented as a cascade of these simple processes. For example,
a radiographic screen converts each interacting x ray into a large number of optical quanta. The optical
quanta are subsequently scattered before they leave the screen. For a thin transparent screen with quantum

efficiency a• (ignoring Swank noise and the Lubberts effect), the distribution of light leaving the screen is

the cascade of a selection, gain and scatter stage, described by

4,.t(r) = [j & 4in(r)] *, psf(r). (10)

The mean number of quanta and NPS are obtained by cascading the appropriate transfer expressions.
Figure (3) shows sample input and output functions passing through this cascaded process.

4. NON POINT PROCESSES

Any process that can be represented in terms of linear operators, such as convolution or multiplication, is
a linear process. The following processes are all linear.

4.1. Integrating Quanta in a Detector Element: Linear Filter

Another elementary process is a linear filter, describing situations where image blur is accurately expressed

as a convolution. The input can be either a point process q(r) or an analog signal, but the output is always
an analog signal such as d(x) where

dolt(r) = qin(r) * p(r) (11)

where p(r) is the filter kernel. Therefore,
doi = A Tn (12)
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d,,(x,y) ' do,(xy)
NPS'v* sincO PS,(u,v)

Sampling with Sinc Interpolation

Figure 4. Sampling is represented as the combination of multiplication with an array of 3 functions
followed by sinc interpolation. The result is a linear operator relating a presampling analog input image
to an analog output image.

where A is the integral of the kernel, A = f_§ p(r) d2 r, and,

NPSot(k) = NPSi,(k)IP(k)I2 = A2 NPSi,(k)MTF 2 (k) (13)

where P(k) is the Fourier transform of p(r). Thus, the input NPS (both correlated and uncorrelated

components) is passed through the MTF. As a result, the output from a linear filter is always band limited
and the noise power spectrum does not have an uncorrelated component.

Integration of image quanta in a detector element can be represented as a linear filter. If all input quanta
incident on elements a, x a. are detected, and if m is the scaling factor relating the number of interacting
quanta to the output signal, the detector presampling signal d(x, y) is given in Cartesian coordinates by

d 0 t (x , y ) = m d i n( x ,X , *Y) ( a x L )a(1 4

where * represents a two-dimensional convolution integral. The mean detector signal dout is given by

dout = m ax ay qin (15)

which is unitless and the NPS by

NPSout(u, v) = m 2 a2 a2 NPSi,(u, v) MTF 2 (u, v) sinc 2 (7raxu) sinc2 (7rayv) (16)

in units of mm2 . It is at this stage, after integration of quanta in detector elements, that one must start
representing the image as an analog image rather than as a quantum image. As a consequence, units of
the NPS are mm2 rather than mm-2.

4.2. Sampling with Interpolation

The process of sampling a presampling signal to produce a discrete digital image has been represented as a

cascaded process by several authors. 14,15 Our description of the sampling operator consists of multiplication
by a two-dimensional array of 3 functions at spacings x, and Yo followed by a sinc interpolation as illustrated
in Fig. 4:

dot(X1 ,y) = [din(x,y) x 6 • 3(x-n xx, y-nyYo) *sinc(7rx/xo) * sinc(7ry/yo). (17)

This representation makes sampling a linear operator (two cascaded linear operations) and results in the
analog image do0 t(x, y) one gets from a sinc interpolation of a digital image. It also has two attractive
benefits. The first is that it avoids the problem of representing a digital image as an array of scaled 3
functions that one gets after multiplication with the 3 functions, thereby avoiding undefined values and
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Figure 5. A simple model of a radiographic screen consists of the cascade of quantum amplification and

scatter processes.

generalized functions. The second is that the resulting analog image is shift invariant as long as the image
is not undersampled and there is no aliasing of image signals. In this case, the same output image is

obtained regardless of where the sampling grid is located within the image for a noise-free image. This
requirement does not apply to image noise, as noise aliasing is not affected by a shift in the sampling
positions for stationary noise processes.

The mean digital values can be expressed as

dour ý dour(x, y) - din(x, Y) (18)

and the output NPS as

NPSout(u, v) = NPSin(u, v) + E E NPSin U-± n,, v ±- (19)
n,=l mny=1 X°

for frequencies below the sampling cut-off frequencies of u, = 1/2x, and v, = 1/ 2 yo. The output NPS has

units of mrm2 .

5. COMPLEX PROCESSES

Rabbani and Van Metter 16 described a number of modifications of the elementary point processes in which
the parameters of the processes (gain, PSF) are themselves functions of a random variable. This random
variable may characterize the input quanta (e.g. x-ray energy) and be independent of position in the image,
or it may characterize position in the image and treat all input quanta equivalently. These relationships
are summarized in Appendix A.

5.1. Lubberts Effect

If both the screen conversion gain and MTF is known as a function of x-ray energy (including a thick
non-transparent phosphor), Rabbani and Van Metter 17 showed the NPS is given by an input-labelled gain
and scatter process averaged over phosphor depth:

NPS[t(k) = [ o • - )IT(k)I2) + (m/] 4ii. (20)

5.2. X-Ray Spectral Effects and Swank Noise

For most x-ray detectors, such as a CsI phosphor, the mean conversion gain g is a function of x-ray energy.
Thus, the input-labelled quantum gain stage can be used to describe NPS transfer. If 0 is a random
variable with a probability density function proportional to the energy spectrum of the interacting x rays,
the resulting NPS is given by Rabbani and van Metter 16

NPSo0 ,t(k) = [()2 + ± -+ )12)] qi = (p) 2 qin + [(O) ± Ki2 - ( 2)]1 qin (21)
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Figure 6. Cascaded-systems graphical programming environment with graphical user interface.

where () means an average over the spectrum of interacting x rays. The term with the square brackets

in the final form of this expression describes Swank noise for a thin transparent phosphor.18 Rowlands
and Taylor, 19 Hillen et al.20 and others have described the variance of the conversion gain as a function of
energy for CsI which can be used in this calculation for a specific spectrum. While this description includes
the variable conversion gain, it does not describe the spatial-frequency-dependent aspects of reabsorption.

5.3. Reabsorption - Parallel Cascades

One reason for a variable conversion gain is the random production, escape and reabsorption of character-
istic x rays from photo-electric interactions. If the K x ray is reabsorbed and the overall conversion gain
is not affected by the fluorescence radiation, the spatial dependence of secondary-quanta production is.
This affects the spatial-frequency-dependence of the NPS and can be described using parallel cascades of

elementary processes requiring the cross-spectral density 21,22 of quantum images (Appendix A).

6. CASCADED-SYSTEMS GUI PROGRAMMING ENVIRONMENT

A potential limitation to the use of complex cascaded models is the number of algebraic terms that
must be manipulated. For instance, in the model described below, 11 processes are used giving rise to
192 separate terms in the NPS (not including the effect of noise aliasing) that must be simplified and
grouped, plus many more terms for the MTF. While many simplifications are possible, this results in
tedious calculations requiring verification. To overcome this issue, a GUI programming environment has
been developed using the Simulink package of Matlab as illustrated in Fig. 6. A model is generated by
selecting blocks representing processes from a "library" of such processes and connecting the appropriate
inputs and outputs. Transfer functions for each block are manipulated using the symbolic math package of
Matlab resulting in analytic expressions for the overall system MTF, NPS and DQE. In this way, models

of arbitrary complexity can be analyzed.

7. FLAT PANEL DETECTOR

The model of a "generic" CsI-based flat-panel detector generated with the GUI is illustrated in Fig. 7.
This model includes the effect of reabsorption (and thereby Swank noise for thin transparent phosphor),
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Figure 7. Model of a CsI-based flat-panel detector generated with the GUI programming environment.

secondary quantum noise and noise aliasing, but does not include Lubberts effect.

The average large-area gain of this system at energy E calculated with this model is given by

G(E) = 77an (22)

where q7 is the quantum efficiency of CsI (0.25 g/cm2 ) and fi = (1 - wý)iinA + wýfnB + wUfKffc is the
average total number of optical quanta emitted from the screen and absorbed in the flat panel detector per
interacting x ray. The number of optical quanta detected per keV of an interacting x ray is to". Therefore,
fhA = Ein-, rnB = (E - EK)ToO, finc = EKif1o, and hence fn = [E - wýEK(1 - fK)] fno. The physical
quantities used are defined in Table 1.

The reabsorption MTF TK (u) is approximated as the normalized zero-order Hankel transform of an
exponential PSF with linear attenuation coefficient Ip(EK) = 2.8 mm- 1 . The optical MTF, To(u), is the
most difficult parameter to estimate. Illustrated in Fig. 8a, it is chosen to give agreement between the
measured MTF and the theoretical MTF given by

MTF(u: E) - [(1 - 4)fA + WT 0iuB + w ~fKfncTK(u) To(U)sinc(7rau). (23)

The presampling NPS is given by

NPS(u: E)= =,qqa 2 [((1 - w6)rhiA + w±ffi + w~fKfi2 + 2w~fKi1BfncTK(u) - m) Týo(U) + fn] sinc2 (irau).
(24)

The resulting DQE, showing the model results with increasing degrees of sophistication, is shown in Fig. 8b
using values in Table 1.

8. CONCLUSIONS

This work describes an energy-dependent, cascaded, spatial-frequency-dependent theoretical model of the
DQE of a flat-panel detector that includes the effects of secondary quantum noise, noise aliasing and K x
ray reabsorption. The factor fn, describes the number of optical quanta that are detected by the active
matrix per keV of the interacting x ray, and is the least well known aspect of the model. The value fin, = 5.5
is only an estimate but is typical for Cs123 and gives reasonable agreement with experiment as shown in
Fig. 8b. The theoretical DQE passes directly through the" experimental points over all frequencies if this
value is reduced to approximately 1.0, increasing the effect of secondary quantum noise.

Secondary quantum noise reduces the DQE by up to 10% close to the sampling cut-off frequency. Also
at these high frequencies, noise aliasing degrades the DQE by approximately 50%. Reabsorption causes a
20-25% degradation of the DQE over most non-zero frequencies, consistent with other works (Metz and
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Figure 8. Left: comparison of measured MTF, theoretical reabsorption MTF TK(k), estimated optical
MTF To(k), and aperture (sinc) MTF. Right: comparison of measured DQE (117 kV, 4 cm Al) with
theoretical model.

Vyborny,24 Hillen et al. 20 ). The value of fK was obtained from a numerical estimate based on the CsI
thickness and solid-angle considerations; however, the theoretical DQE result is insensitive to variations in

fK between 0.6 and 1.0. It is important to note that a large-area model or measurement of the DQE (zero-
frequency value) would miss most of these effects, emphasizing the importance of a proper frequency-based
model.

9. ACKNOWLEDGEMENTS

The authors are grateful for financial support from the Canadian Institutes of Health Research, the US
Army Materiel Command Breast Cancer program and the Ontario Research and Development Challenge
Fund.

Name Value Quantity

qo Average number of incident quanta per mm2 in energy bin E.
EK 33 keV K-edge energy of CsI (average of Cs and I).
w 0.89 Fluorescence yield of K-a photoelectric interactions in CsI (average).

0.85 Probability that an interacting x ray undergoes K shell interaction.

fK 0.88 Probability that characteristic x ray is reabsorbed. DQE is insensitive to
changes between 0.6 and 1.0.

fno 5.5 Number of optical quanta detected per keV of an interacting x-ray quantum.
Includes coupling efficiency from CsI to detector, fill factor, etc.

a 0.14 mm Pixel dimension.

Table 1. Definition of terms used in the model DQE.
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APPENDIX A. SUMMARY OF 1-D NPS TRANSFER RELATIONS

PROCESS OUTPUT NPS REF (Eq)

QUANTUM GAIN

Uncorrelated • 2NPSi,,(u) + a2q,ý 12
(mean gain constant)

Input-labelled (0)• NPSi,(u) + + varo{j}] q,• 16 (26)
(eg. mean gain varies with energy)

Uncorrelated position-labelled (ý)2 NPSi,(u) + [(U2) 0 + varo{f}] q7n 16 (48)
(mean gain random with position)

Correlated position-labelled (2)2 NPSjn(u) + NPSjý(u) * W,(u) + [W9 (u) + (o_)o] q,, 16 (43)
(mean gain spatially correlated)

QUANTUM SCATTER

Uncorrelated scatter [NPSi,,(u) - qin] IT(u)12 + tin 12

Input-labelled PSF [NPSi.(u) - qjn] I (T(u))0 12 + qin 16 (63)
(eg. psf varies with energy)

Uncorrelated position-labelled PSF [NPSj,(u) - qin,] I (T(u), 12 + n 16 (81)
(psf varies randomly with position)

Correlated position-labelled PSF [NPSi,(u) - q .] I (T(u))0 12 + SI(u) + 16 (77)
(psf spatially correlated) [qti S 1 (u) - a, (u) + 1] ,

GAIN AND SCATTER

Uncorrelated [g2 NPSin(u) + (U2• - g)qii] IT(u)12 + , 12

Input-Labelled gain/PSF [NPSi,(u) - qin] I (ýT(u))o 12 + q,. ((g2 + 2r - )lT(u)12) 0 + 16 (20)
(eg. both mean gain and psf vary M0 qiý
with energy)

OTHER

Linear filter A2NPSi,(u)MTF 2(u) 25
(eg. integration of quanta in detector
elements)

Sampling and noise aliasing NPSi,,(u) + -,,- 1 NPSiý (u - •o) 15 (2.200)

Cross-covariance of two subsets of a [tNPSIn(u) + KýCqi,,] ýAjBTA(u)TB*(U) 22 (94)
quantum image

varo{ý} = (p2) _ (fi)2

Wg(u) = power spectrum of gain function g(x) (FT of cross covariance of g(x))

Si (U) f fJTR(u, 9)TR(u, 0') [G(0,0',u) * NPSj(u)] dOdO'

SI,(u) = fJ TR(u, O)T*(u, O')G(O, 9', u)dOdO'

aT(u) = (IT(u)12)0 - I (T(u))0 2
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A methodological framework for experimental analysis of the noise-power spectrum (NPS) of
multidimensional images is presented that employs well-known properties of the n-dimensional
(nD) Fourier transform. The approach is generalized to n dimensions, reducing to familiar cases for
n = 1 (e.g., time series) and n = 2 (e.g., projection radiography) and demonstrated experimentally
for two cases in which n = 3 (viz., using an active matrix flat-panel imager for x-ray fluoroscopy
and cone-beam CT to form three-dimensional (3D) images in spatiotemporal and volumetric do-
mains, respectively). The relationship between fully nD NPS analysis and various techniques for
analyzing a "central slice" of the NPS is formulated in a manner that is directly applicable to
measured nD data, highlights the effects of correlation, and renders issues of NPS normalization
transparent. The spatiotemporal NPS of fluoroscopic images is analyzed under varying conditions
of temporal correlation (image lag) to investigate the degree to which the NPS is reduced by such
correlation. For first-frame image lag of -5-8 %, the NPS is reduced by -20% compared to the
lag-free case. A simple model is presented that results in an approximate rule of thumb for com-
puting the effect of image lag on NPS under conditions of spatiotemporal separability. The volu-
metric NPS of cone-beam CT images is analyzed under varying conditions of spatial correlation,
controlled by adjustment of the reconstruction filter. The volumetric NPS is found to be highly
asymmetric, exhibiting a ramp characteristic in transverse planes (typical of filtered back-
projection) and a band-limited characteristic in the longitudinal direction (resulting from low-pass
characteristics of the imager). Such asymmetry could have implications regarding the detectability
of structures visualized in transverse versus sagittal or coronal planes. In all cases, appreciation of
the full dimensionality of the image data is essential to obtaining meaningful NPS results. The
framework may be applied to NPS analysis of image data of arbitrary dimensionality provided the
system satisfies conditions of NPS existence. © 2002 American Association of Physicists in Medi-
cine. [DOI: 10.1118/1.1513158]

Key words: noise-power spectrum, radiography, fluoroscopy, computed tomography, cone-beam

computed tomography, flat-panel imager, imaging performance, 3D imaging, 4D imaging,
multidimensional imaging

I. INTRODUCTION formance, such as detective quantum efficiency (DQE) and

The detectability of fine and low-contrast structures in medi- noise-equivalent quanta (NEQ), which in turn are related to

object and observer-dependent measures such as detectabilitycal images can be strongly affected by the magnitude and ineadrcivrortnghrceisc.Sneerrsn

frequency content of stochastic variations in image signal. nPe an ranslate directerrs inch erics of

Therefore, quantitative measurement of imager noise charac- NPS estimation translate directly to errors in such metrics of

teristics is an important aspect of the development and as- performance, the motivation for accurate NPS estimation is

sessment of imaging technologies. The image noise-power clear. The strong interest in establishing standard methods

spectrum (NPS) quantifies the frequency characteristics of for NPS measurement is evidenced by the AAPM Task

fluctuations in image signal and encapsulates many of the Group2 concerning NPS analysis of two-dimensional (2D)

physical factors affecting image quality, such as gain, spatial x-ray projection images.

resolution, additive noise, and aliasing. Furthermore, it is Analysis of image noise is especially important in the

fundamental to analysis of figures of merit for imager per- development, characterization, and optimization of novel im-
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aging technologies. 3 Such is evident in the development of of n dimensions (x1 ,x 2 ,...,xn), denoted with the shorthand

active matrix flat-panel imagers (FPIs) in the last decade 4-7  d(xl:n), where the multidimensional domain of a function is
for 2D projection imaging. Currently, there is strong interest written
in application of FPIs to three-dimensional (3D) imaging, as
in fluoroscopy 8' 9 (i.e., acquisition of 2D projection images in (X1:n) (xI ,X2 ... x,). (la)

temporal succession, constituting 3D data in the spatio-
temporal domain) and cone-beam CT1°0- 2 (i.e., reconstruc- For example, the 3D spatial domain is denoted (XI: 3)

tion of 3D volume images from 2D projection views). Simi- = (Xi ,x 2 ,x 3)=(x,y,z). Similarly, the domains involving a

larly, technologies are being pursued for 4D imaging, as in parameter, e.g., bi, in combination with a dimension, xi,

volume fluoroscopy13 (i.e., reconstruction of 3D volume im- such as (bxI:,,) and (x/blI:n) are denoted with the short-

ages in temporal succession). The development of these tech- hand shown in Table I. A discretized nD domain is denoted

nologies will also benefit from a quantitative understanding with square brackets as [xi ]---equivalent to the continuous

of imager noise characteristics. However, as the technologies (x, :,) except that locations in each domain are restricted to

advance and the dimensionality of image data grows, integer values. Analysis below primarily uses continuous no-

straightforward application of established NPS analysis tech- tation, with results given for both the continuous and discrete

niques can be fraught with error, and accurate characteriza- cases.

tion of the noise properties of multidimensional imaging sys- The nD image has mean signal d, with fluctuations about

tems poses a challenge. the mean denoted Ad(xl:n)=d(xl:n)-d. The image is

This paper presents a formal description of image NPS formed by an nD array of rectangular apertures, where the
analysis in n dimensions that uses well-known properties of extent in the ph domain is ai, representing extent in spatial,

the nD Fourier transform.14 18 It reduces to familiar cases temporal, or other domains and carrying units appropriate to
for n= 1 (i.e., ID data) and n=2 (i.e., 2D data such as a the domain. A shorthand notation like that in Eq. (la) repre-
projection radiograph) and makes explicit the factors affect- sents a linear combination

ing the NPS for n = 3 (i.e., 3D data) and beyond. While the
measurements are based on an experimental system for 3D n

a 1-[I i (lb)
imaging using an FPI, the objective is not to report on the ai:&=--. a.b
performance of a particular system (e.g., in comparison to
image intensifiers or CT scanners), nor to present a theoret- Parentheses or brackets distinguish a functional domain [Eq.
ical method (e.g., using cascaded systems analysis19-2 3) for (la)] from a linear combination [Eq. (lb)]. We write bi for
prediction of the NPS. Rather, the nD approach is intended the pixel size (sampling interval) in the ith domain, Ni for the
as a framework for experimental analysis of multidimen- number of pixels in a realization along the ith domain, and Li
sional image noise (within the constraints of NPS existence), for the extent of a realization in the ith domain. Hence, Ll
particularly concerning the effects of nD correlations and the = biNi. Note that the sampling interval, bi is not necessarily
requisite normalization factors associated with various NPS equal to the extent of the integrating aperture, ai, nor to the

analysis techniques. effective aperture size, ai, discussed below. Integrals are

taken to be multiple integrals over the domains associated
with the differentials, dfi:

II. MATHEMATICAL METHODS 1f

This section outlines the general mathematical framework f f i L f
for analysis of the NPS of multidimensional image data. In
Sec. II A, a compact multidimensional notation is introduced The image d(x 1 :,,) represents the response of a system to
along with a generic Fourier description of image NPS in n a generalized nD input distribution, q(x,:,,), with mean

dimensions. In Sec. II B, the nD NPS is derived for the case value, q, and fluctuations about the mean given by

of a linear, shift-invariant system with a Poisson-distributed Aq(x :,)-q(x1,,)-q The input distribution results from a
input. In Sec. II C, the relationship of the full nD NPS to wide-sense stationary random process and can represent a
"central slice" analysis techniques is presented in a way that quantum fluence, fluence rate, etc.25 The mean output signal
clarifies issues of normalization and quantifies the extent to is related to the mean of the input distribution by a constant,
which such techniques provide an accurate central slice of y (referred to loosely as gain), and the nD impulse response
the nD NPS. function, p(xl:,,), is the output for the case in which the
A. Notation and definitions input is an nD delta function.

The Fourier conjugate to (xI:,,) or [xi:nl is the frequency
The notation below follows that of Dainty and Shaw18 and domain (fl:,) or [f 1 ,,J, respectively. The Fourier transform

Cunningham, 24 with forms generalized to n dimensions. (See operator is denoted FT{ }, and the discrete Fourier transform
Table I.) We consider a generalized nD image for which the operator is DFT{ }, with the relationship between the two

mean and autocorrelation function are constant in all do- described for digital imaging systems in Ref. 24. The Fourier
mains; therefore, the process forming the nD image is representations of the zero-mean input and output distribu-
wide-sense 16,17 stationary. The image signal, d, is a function tions, respectively, are therefore
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TABLE I. Glossary of terms and symbols. We consider the "direct-digital" technique18 of NPS

Generalized nD NPS analysis: analysis in which the NPS is determined from the ensemble
average of the modulus-squared of the Fourier transform of

(x:.,) Continuous n-D domain (x ,x2.... x,) the zero-mean image signal. A simple block diagram illus-
[xl:,,] Discrete n-D domain [x 1 ,X2 . .X.,] trating the technique is shown in Fig. 1. For the nD case, the
(fl ,.) Continuous n-D frequency domain (f, ,f2 .... f,) NPS is denoted S(fJ :n),

fi .n] Discrete n-D frequency domain [f, ,.f2 . f.]
(axI :.n) Functional product (aoxi ,i 2x2 ... ,anx,,) S(l:n) -W A OV D(fl :) 12), (3)
(xlali.,,) Functional quotient (x /el ,x2 /a 2 .... XnIan)

ai Aperture size in domain i where the normalization factor, Wcont accounts for the finite•'norm'

bi Pixel size (sampling interval) in domain i extent of image realizations forming the ensemble as dis-
Ni Number of pixels in realization along domain i cussed below. For discrete data, Ad[xl.nl, with discrete Fou-
Li Length of realizations in domain i rier transform, AD[fl~nI, the NPS is
BWI, Bandwidth integral over domain i
ai Effective aperture size in domain i Sf dscrtc] <IAD[Jf1:nI>. (4)
Ai Extent of synthesizing aperture in domain i .n norm

d(xi:.) Image signal The normalization factors associated with the continuous and
D(fl:,,) Fourier transform of image signal discrete cases can be simply related by considering the
q(x.:,,) Input distribution (generalized function) transforms. 24 The NPS for the discrete case [Eq. (4)] is
Qf :,,) Fourier transform of input distribution (generalized function)
rl(x/al I:,,) Rect function: apertures of width ai equivalent to that of Eq. (3) evaluated at discrete frequencies,
IIl(x/bli:,) Comb function: delta functions at intervals of bi where the frequency interval in the ih domain is IlLi. De-

y Ratio of mean signal output and input (gain) noting the NPS evaluated at discrete frequencies as
p(xl:,,) Impulse response function S(fI:n)Ieval, gives
T(f,) Transfer function for domain i

NPS normalization for continuous D analysis],

wdniscr~te NPS normalization for discrete nD analysis

n NPS normalization for analysis by extraction -or nl eva -lAO[fl 2, (5)
WsYoth NPS normalization for analysis by synthesis
S(f 1,:,,) Noise-power spectrum 4norm (I AD[fl:n]I')

{A} Units of a quantity "A" jydis-rctC (hAD(fl:n) 2) 1 v.]I
•"norm '1nca

The spatiotemporal NPS: Evaluation at discrete frequencies corresponds to multiplica-
(x,yt) Spatiotemporal domain tion in the frequency domain with the comb function
(fC ,f,) Spatiotemporal frequency domain
a., ay, Aperture extent in x, y, and i domains L 1 :nll(LJl:n)= b :nNi:nIII(LJI :n). Writing the continuous
a, and discrete Fourier transforms as in Sec. 2.4 of Ref. 24 and
Lagik kth-frame image lag employing the sifting property gives
IRF(t) Temporal impulse response function Nnnnt

T ,.g(ff) Temporal transfer function o _ INk.Ad[x1 :,,]e I':m /Ni:n12

a, Temporal bandwidth integral nor - f d(xt:n)e-12  1T1,, Xi.ndx I 2 v

The volumetric NPS: N 1 2 ixirk1 .2

(x,yz) Volumetric spatial domain k -I :J 2
(fx ,fy ,f) Volumetric frequency domain I2=I Ad[xil:n]e -2 

,ki:n:n/N:nb In1 2

as, ay, Aperture extent in (x,yz) domains

1 N2Ni:n

Hwin Apodization window in 3D reconstruction -- = (5b)

hwin Apodization parameter of reconstruction filter b i:,7 L L:.

The normalization factors associated with the discrete and

continuous cases are therefore related by

L2
A QV 1:n) = -FT{Aq(x :,,)I w//discrcte--•~ wcont
and norm norm" (6)

and

Several special cases are considered below where (x l:.)

represents spatial and/or temporal domains. The case n=2
and for the discrete signal represents the familiar case of 2D imaging (e.g., projection

AD[f1:,]-DFT{Ad[x1:,,]. (2b) radiography), where the domain is the 2D spatial domain
denoted (x,y). For n=3, two cases are considered. The first

While Q(fI:n) tends to infinity for q(x.:n) of infinite extent, involves the spatiotemporal domain in which (XI: 3) is de-
in practice q(xl:) is bounded and terms involving Q(fI:n) noted (xy,t) and pertains to the 3D domain of projection data
are defined such that the result is finite. Similarly, the nD in the image plane acquired as a function of time, as in x-ray

transfer function for the system is given by the Fourier trans- fluoroscopy. The second involves the volumetric domain in

form of the normalized impulse response function: T(fj:,,) which (Xl: 3) is denoted (x,yz) and pertains to the 3D spatial
----IFT~p(xl:,)}[. domain in volume reconstructions, as in cone-beam CT.
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1. Image data the integrating apertures (nD rect functions) from all other

d~x•.] sources of image correlation [denoted p'(x I:)]. While a de-
terministic model rarely gives a precise description of the
signal and noise characteristics of real physical systems (due
to complicating factors in the process of signal
formation27- 29), such is invoked simply to provide a relation-

2. Zero-mean detrending ship between the signal, input distribution, integrating aper-
SAdX1 J tures, etc. The general framework described below does not

rely on the deterministic assumption and is applicable to
measured data that satisfy the basic requirements of NPS
existence.|8 '24'30 The corresponding presampling NPS is sim-

3. FFT (modulus squared) ply

"IDFT(Ad[,x1 :J}
2

S(fi:n)= 'y2a1 T :0). (8a)

As discussed in detail elsewhere, 4'2,' 24' 31' 32 for a discretely
sampled digital signal the NPS may be increased due to
aliasing, as given by the presampling NPS convolved with

IDFT{.4xi:J}2)] the Fourier transform of the sampling function

i(fl:n) = y2al ,,T 2 (fl :n)*bl:nIII(bfl l:), (8b)

6. Normalization
where III(bfJ :,,) represents an n D array of delta functions at

multiples of the sampling frequency. Note that S(fI:,) is a
measurable quantity evaluated at frequencies below the Ny-
quist frequency, fiNyq= 1/2ai. In the context of projection

FIG. 1. Functional block diagram illustrating the essential steps of NPS radiography, the relationship between the presampling signal,
analysis. (1) n-dimensional image data, d[x 1:,]=d[xi ,x 2 . . x,] are con- the digital image, and the resulting NPS is well known.2'
sidered. (2) The data are corrected for low-frequency trends (long-range
image nonunifonnity), and the mean image value is subtracted to form zero- Extension to nD is straightforward though notationally cum-

mean realizations. (3) The modulus of the nD FFT is computed, and the bersome, and offers the same essential result: nD sampling
result is squared. (4) The process is repeated for each realization in the data increases the NPS by nD convolution in the frequency do-
ensemble, and (5) the results are averaged. (6) The properly scaled NPS main.
estimate is obtained upon application of a normalization factor that accounts
for the finite length of the realizations and, depending on the analysis tech- To derive the nD NPS, the Fourier transform term in Eq.

nique, tapering, extraction, and/or synthesis of the data. (See text for de- (3) for the system described above is
tails.) 1lDf:)2) = .Z2.(A f ,:,)12)

•JDf~) ya~(A~ TV 1:0 :) (9a)

B. Derivation of the nD NPS The ensemble consists of finite-length realizations (a fact im-

The sections below convey the relationship between an posed by finite detector size, measurement time, etc.). These

nD image and the NPS in a manner that is directly applicable are equivalent to realizations of infinite extent truncated by a
to measured nD data, highlights the effects of nD correla- rect function, (1/Li:,,)H(x/LIi:n). In the conjugate domain,

tions, and makes the issues of normalization, units, and con- this corresponds to convolution with a sinc function,
vergence among various NPS analysis techniques completely L t:n sinc(Lf l:0). Truncation in this manner corresponds to
transparent. Derivations are cast in a form that reduces to the crudest form of tapering window14- 7-1 a boxcar func-
familiar ID and 2D cases. For a linear, shift-invariant system tion. Use of special tapering windows simply incurs a nor-

with deterministic response (i.e., one in which the processes malization factor associated with the window function,
of image formation introduce correlation, but not noise, to which can be computed in the same manner as described
the input distribution 2 1) it is straightforward to show 20' 26 that -here. For finite-length realizations, the NPS becomes
the presampling signal is

A dx y q x : J*p x 1 1) S 1: ýWcnormt y2 a 1 :A( ' Q(f l:,,)

Idxl)= q- (7) 1 ,T(f):,),*L :,, sinc(Lf :)1 2 ). (9b)

aI1n n

The length of the realizations is assumed much greater than

where the second line separates components associated with the correlation lengths characteristic of T(fl:,,), giving

Medical Physics, Vol. 29, No. 11, November 2002
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S(fl:0 )= W,'-"'y 2a2:, 7T2 (f I:n) methods (e.g., "extraction" and "synthesis," described be-norm Ilow).
X(I AQ(f:n))*LI:n sinc(LJl]:,)12) A final note regarding the units of the NPS, which can be

ot 2/fl2 2 2 understood by a simple rule of thumb: for an image signal,
norm al:nT :)L l:n Q :(fJ:) d(xl:.), with units denoted {signal}, the NPS has units given

f j by the those of the signal squared times the linear combina-
X J sinc2(L I:n)dfl:n tion of units for all domains. That is, the units of the NPS

{NPS}, are related to the units of the signal {signal}, and the

Wont 2  2:n 1T 2  units of each domain {domain1 }, by the rule:--Wnormny2al:,,L1l1:n•, qTV(f:n)

n

,,vcoflI Y2 2 'n~oaa:,,L:q-T(fl:,), (9c) {NPS} ={signal}2If {domaini}. (13)
i=1

where the assumption of a Poisson-distributed input distribu-
tion has been invoked (valid, e.g., when the input distribution
consists of discrete quanta), and the L :,, results from trun- In all cases below, we consider a dimensionless nD signal.
cation to finite-length realizations. Comparing to Eq. (8a), Therefore: (i) for the 2D projection domain [n=2 and
the normalization factor for truncation of the realizations is (xi:2)=(X,y)], the NPS has units mm2 ; (ii) for the 3D spa-
given by the reciprocal tiotemporal domain [n = 3 and (Xj: 3)= (x,y,t)], the NPS has

units mm 2 s; (iii) for the 3D volumetric domain [n=3 and

j'Vcnont  (10) (X 1:3)=(X,y,Z)], the NPS has units mm3; (iv) for the 4D
Lj:. fully spatiotemporal domain, {NPS}=mm3 s. Furthermore,

the nD integral of the NPS equals the variance in image pixel
which is seen to be a straightforward nD extension of the values. 1 8

normalization constant shown for ID and 2D in Dainty and
Shaw18 and other texts. For discrete data, therefore, the nor-
malization factor is

C. Central slice NPS analysis: extraction and
L oniscrctc=LI:n t ba.,, synthesis

Wnorm -2 norm (11)
Nj:n Historically, full nD spectral analysis as in Eq. (11) was

Therefore, the NPS evaluated by nD discrete Fourier trans- uncommon for n> 1 due to practical limitations in comput-
form of finite length realizations, written in a form directly ing speed and multidimensional fast Fourier transform (FFT)
applicable to the zero-mean measurements is algorithms. Techniques in which portions of the NPS (e.g.,

slices along major axes) are analyzed have become

12). common-e.g., by (1) "extracting" realizations from the nD
S[fl:n]= ýL(!DFT{Ad[x1:,,]} 2). (12) image; or (2) "synthesizing" realizations along one or more

1:n, domains. The former technique is subject to significant error

This straightforward derivation closely follows the famil- unless attention is paid to correlations orthogonal to the do-
iar "direct-digital" method of NPS analysis 18 and provides a main of the extracted data. The latter technique requires that
useful perspective on factors affecting measurement of the the extent over which data are synthesized (i.e., summed or
multidimensional NPS. First, it is generalized to n dimen- averaged) be sufficient that the resulting NPS converge upon
sions. So rather than "building up" inductively from lower a central slice of the nD NPS (e.g., in the "synthesized slit"
dimensions to infer the nD NPS (e.g., applying one's knowl- technique for 2D images). As noted by Dobbins et al.,33

edge of the ID and 2D NPS to ascertain the 3D NPS), we analysis of the full nD NPS can reveal off-axis noise char-
have a simple "top-down" approach that describes the NPS acteristics that would otherwise be missed. Still, there are
for any dimensionality. Second, the form does not restrict the several reasons that a reduced-dimensionality approach may
nature of the image domain. Thus the n dimensions may be desirable or necessary: for a given body of data, such an
represent any combination of domains of space, time, etc., approach can yield a larger number of realizations and re-
provided the system satisfies the assumptions for NPS exis- duced standard error; constraints of display media make rep-
tence. Third, the approach emphasizes the role of correla- resentation of the nD NPS awkward for n>2; computer
tions on the NPS-e.g., spatial correlation (ID, 2D, or 3D memory requirements can be strained for large realizations in
"blur"), temporal correlation ("image lag"), etc.-and pro- which n_-3; finally, the amount of useful data may be lim-
vides a starting point from which such correlations can be ited (e.g., by experimental technique or by wide-sense sta-
accommodated in measurements of NPS. As shown below tionarity) to "extractions" from the full nD data-e.g., a
for two cases of 3D imaging, failure to appreciate such cor- single fluoroscopy frame, a single volumetric slice, etc. As
relation can result in significant error. Finally, the approach shown below, the general framework for nD NPS analysis
provides a framework for understanding the relationship and removes the distinction between such techniques and de-
continuity between the full nD NPS analyzed by nD Fourier scribes a methodology for analysis of the full nD NPS or
transform and the "central slice" NPS analyzed by other central slices therein.
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1. Central slice NPS analysis by extraction (a) n=2: (e.g., Projection Radiography):

Extraction of realizations directly from nD data (see Fig. re-l: 1Storder extraction
2) is usually recognized as a problematic starting point for
NPS analysis, since it requires account of correlation or- d[x,' X21
thogonal to the direction of extraction. If realizations are
extracted unwittingly, the resulting NPS will underestimate extract d[xI]

the true NPS in a manner related to the ignored correlations. ..................... I
We consider an nD image from which realizations of dimen- VTVW1R'
sions (n-m) are extracted to analyze the NPS, S(fI:,,-m).
We dignify the process with the term "mth-order extraction."
The dimensions can be arbitraribly reordered such that the
lower domains 1:(n - m) are extracted, while the higher do- (b) n=3: (e.g., Fluoro, CT Fluoro, or Volume CT):
mains (n - m + I): n are excluded. Furthermore, data are ex-
tracted along the entire extent of the data-i.e., data are not m=l: lst-order extraction
"cropped" from within d(xl:n) (which would simply intro-
duce truncation terms) but are extracted in entirety along extract d[Xl, X2 , x3]
domains (xl:n-m). The extracted data, d(xl:-.m), are there- . ..... 1X21

fore equal to d(xn:,) multiplied by a set of nD delta func-
tions in domains (x(n-mi+I):,). Without loss of generality, I
the origin is chosen such that data are extracted at
(X(n-mr+ I):n) = 0:

d(xl:n-,,) = d(x 1 :n) 8(x(._.i+ 1):n- 0) (14a)

which in the Fourier domain corresponds to convolution with m-2: 2 nd-order extraction
a constant. The term of interest in the NPS is d[x1, x2, x3]

D(f = AD(f fl:)dfI(nm+ 1l):nfextractd1]

(14b) f

and the NPS in the reduced (fi~n-rn) domain is FiG. 2. Extraction of realizations from nD data. Extraction is the simpler of

the two dimension-reduction techniques discussed in the text for analysis of

S(l :-) Wnorm orm " a1 :n A Q (2f :n) the central slice NPS. It is also the more prone to error, since it requires full
nomtaccount of correlations orthogonal to the extracted data. (a) Illustration of

extraction from 2D data, such as extraction of individual "rows" from a 2D
2/) digital radiograph. (b) Illustration of extraction from 3D data, such as ex-

X T(fl :,,)df(n-m+I):n , (14c) traction of individual "frames" from a fluoroscopic sequence or individual
"slices" from a volume CT image. Higher order extraction is also illus-

where Wc9nt accounts for truncation to finite length, and trated, such as extraction of individual ID "rows" from 3D data.
normwnxtrac accounts for extraction. To put the equation in a

simple, intuitive form, the system transfer function is as-
sumed to be separable apodization filters are applied only in the transverse direc-

n tion, but attention must be paid to the degree to which the
T(fJ:,)=I-[ T(fi). (15) detector MTF is separable.

Taking the ensemble average of the modulus squared as in
Eqs. (9) yields the same L I:n term for the length of the real-

While this is not a necessary assumption, it renders the effect izations, with the transfer function now distinct between the
of extraction on the NPS transparent. The assumption is rea- extracted domains (fl:n-n) and orthogonal domains
sonable to varying degrees among different technologies and (fn -m + ):,,):
image domains. Separability of spatial and temporal compo- xiraci 2
nents is often valid. For FPIs, the imaging array may have a S(fI:n-n) norm norm .I:al:n-mq- 2

(f,:,-m)

separable MTF of the form Isinc(ax)sinc(ayy)I; however,
the detector system MTF may involve effects that are radi- X f T 2(f(,i,_m+):n)df(n-m+l):n. (16)

ally symmetric, such as K-fluorescence and choice of x-ray
converter. In volume CT, separability between transverse and Therefore, the NPS is reduced by a factor given by the inte-
axial domains is reasonable to the extent that ramp and gral over the transfer functions in all domains orthogonal to
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the extracted signal. This factor represents a bandwidth inte- (a) n=2: (e.g., Projection Radiography):
gral over the orthogonal domains, similar to that in Wagner
et al. , where the bandwidth integral for the domain fi is m=l: 1 St-order synthesis

BWIi-f T2(fi)dfi (17a) d[xIX 21

the reciprocal of which is an effective aperture for the ith d[xll

domain > AAgY

WI~al-- BWli (17b)

The effective aperture has units corresponding to that of the
domain (e.g., length or time for the spatial or temporal do- (b) n3: (e.g., Fluoro, CT Fluoro, or Volume CT):
mains). Furthermore, for the special case in which the trans- m=l: ISt-order synthesis
fer function in the ith domain is a sinc function for which the
first zero exactly equals the sampling frequency (i.e., system d[x,, x 2, x3]
response is uniform throughout each sampling interval), the xlX2
effective aperture equals the aperture: ai=ai.

The normalization factor such that the resulting NPS ana-
lyzed by extraction is a central slice of the full nD NPS is =>
therefore the reciprocal of the bandwidth integral

WWoxtrac -= 2 (f(, -m + 1):n) df(n +m 1 ):,

Sa(,,-+ 1):,(18) m=2: 2 hd-order synthesis

and the NPS evaluated by extraction can be written in a form *[X1 , X2, X31 d[Xl, X21

directly applicable to the extracted data
S , -,n= ao• (,orm I.DFT{J Aud[x, .-m]} i

b 1 :n-,m (n -° n("-+ 1):,,( DFT{ A d[x1: n-m]}2), .

(19) d[xI]

where the a term represents the linear combination of effec-
tive apertures for the excluded domains (n-rm + 1) to n.

FIG. 3. Synthesis of realizations from nD data, in which realizations of
reduced dimensionality are obtained by integrating across a synthetic aper-
ture (illustrated by the shaded regions and the summation symbol). (a) Il-

2. Central slice NPS analysis by synthesis lustration of synthesis from 2D data, equivalent to the well-known synthe-

sized slit technique of NPS analysis of 2D radiographs. (b) Illustration of
The process of synthesis is illustrated in Fig. 3. We con- synthesis from 3D data, such as integration over multiple "frames" of a

sider nD image data from which realizations of dimensions fluoroscopic sequence or multiple "slices" of a volume CT image. Higher

(n - m) are synthesized by integrating the data along do- order synthesis is illustrated in which 3D data is integrated along a given

mains ( n We dignify the process with the term domain to yield a 2D "synthesized slice," which in turn is integrated tomain (Xn-m+O~n" W digifythe rocss ith he erm yield a ID synthesized realization.
"1mrth-order synthesis." The methodology for the case n=2

and m = 1 (i.e., the synthesized slit technique) is described in
numerous sources, 3' 4' 27 with the goal being estimation of the Sfl :n-,n)= " norm"synth n 2 a1,,Lj ,,-mq T2 (fl :n)

NPS along a subset of the major axes [i.e., a "central slice" J

of the NPS, where the slice has dimensionality (n-m)]. XTsnthfl:n)df(nn,+ 1):n, (20b)
Following Dainty and Shaw,18 the central slice of the NPS is SY l):n

where the normalization factor _ynth accounts for synthesis.
S(fI:n-n)=S(fl:n)f(n-m+1):,,=O Assuming separability as in Eq. (15) gives

ont ynh Y 2 2-

(20a) S(fl:n-m) = Wnor Wnorm al:nLl:n-nT(f:n-im)f S fl: n) TsynthVf1l:n)df(n- + 0):ni (2 a

where Tsynth(fI:,,) is the transfer function associated with X Tsynth(fl:n-.m) T2(f(nn-,+ ):,,)

synthesis (i.e., integration over an nD synthesizing aperture).
As in Eq. (16), therefore X Tsynth(f(,_.nm+l))df(-,,_± I+):n (20c)
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The synthesizing aperture is chosen such that Tsynth(fJ,:n) aperture that is too short results in underestimation of the
satisfies two assumptions related to "convergence" of the central slice. In practice, progressively "longer" synthesiz-
resulting NPS upon a central slice. First, for the domains ing apertures may be chosen until the resulting NPS con-
(fl:n-r) correlations associated with Tsynth(J n-rn) are verges upon the central slice. A method for quantifying the
negligible compared to those associated with the system degree of NPS convergence is demonstrated below. Note,
transfer function, T(fl:n-m) Therefore, the product however, that even when this requirement is not satisfied, the
T(Jl:nfm)Tsynth(fl:n~m) is approximately T 2 (fl:nm), and underestimation can be corrected by dividing out the integral

Eq. (20c) becomes of Eq. (21)-similar to the bandwidth integral for the extrac-
S(f. )Wcont J4 /synth2 2 tion case. In fact, extraction and synthesis are seen to be

non-m normWnorm ial:nL n-q-T l:n-m) endpoints on a continuum of techniques. That is, "extrac-

tion" can be viewed as a case where the "synthesizing" ap-
Xf T2(f(n-.n l):n) erture has extent equal to the apertures. In each case, the

bandwidth integral provides appropriate normalization and
X Tsynth(J(n-m+l):n)df(nnm+1):n. (20d) units for the NPS.

Second, for the domains (f(n-m+ 1):,,) correlations associated
with the synthesizing aperture are much greater than those III. NOISE-POWER SPECTRUM MEASUREMENTS

associated with the system transfer function. Therefore, the The NPS was measured for two cases in which n = 3 us-
product T2V(f(n m1):n)Tsynth(2f(n-m+l):n) is approximately ing a single experimental platform. In the first case, (XI: 3)
Tsynth(f(n-m+1):,1), and Eq. (20d) becomes -(x,y,t), corresponding to acquisition of projection images
S(fl:n-)-W tormWsynthT

2
2-:nL I:n2 - mq-T

2 (Il n-rn) in temporal succession (as in x-ray fluoroscopy), and the
o norm spatiotemporal NPS was analyzed. In the second case,

f 2 (X,: 3)=(x,y,z), corresponding to cone-beam CT, and the
X TsynthV(n-m+l):n)df(n-m+l):n (21) volumetric NPS was analyzed. In each case, the NPS was

This is the general form for the "central slice" of the full nD investigated under conditions of varying correlation: for the
spatiotemporal case, temporal correlation was examined by

NPS evaluated by synthesis. A common case is where the varying the image lag; for the volumetric case, correlation in
synthesizing aperture is an nD rect function, chosen "nar- the transverse plane was varied through adjustment of the
row" in (Xl:n-m) and "long" in (X(n-m+i):n). Then reconstruction filter.
Tsynth(fl:n) is a sinc determined by sidelengths, Ai, of the
synthesizing aperture, and Eq. (21) becomes A. Experimental platform
SW(fi:n WCofnt WsynthY,2a2 -T2(f The experimental 3D imaging bench has been described

norm norm a1in detail elsewhere.' 0 The primary components of the bench

Xf( n sinc 2 (Af)df( are an x-ray tube [Dunlee PX1415 tube with Picker MTX
sini2±di -fn-m+ ):n 360 generator] and a flat-panel imager, FPI [PerkinElmeri=?-m+1 RID-1640]. The FPI incorporates a 41X41 cm 2 array of

Jycont wsynth 2a2 Ln T(f )-Si:H photodiodes and TFTs at 400/tm pixel pitch (-80%
norm normy 1:1n n?-ni _____m

fill factor) in combination with a 250 mg/cm 2 CsI:TI x-ray

XA (22) converter. Pixel values were digitized to 16 bits, and the
A(n-m+1):,n detector could be read at frame rates up to 3.5 frames per

The normalization factor is therefore the reciprocal of the second (fps). The imaging geometry corresponds to a system

term associated with synthesis, A(,ni+1):n, under development for image-guided radiation therapy,35

with a source-to-isocenter distance of 100 cm and a source-

ii ( n f m ] -' to-detector distance of 160 cm.Wnyrtm [ sinc2 (Afdi) df(n-m+l):n

B. Case n=3: The spatiotemporal NPS-A A(n-m+±1):,, (23)

For measurement of spatiotemporal noise characteristics,
and the NPS evaluated by synthesis can be written in a form the 3D image domain is (x,y,t), with x and y along detector
directly applicable to the synthesized data: rows and columns, respectively, and t the temporal domain.

S~fl n-m] Wnormt Winomlt -xlnh( I DFt{dx, : ]}s2 The x-ray tube was operated at 120 kVp, with 2.5 mm Al
norm norm )+ 0.625 mm Cu of added filtration, and the exposure per

bl:n-m frame at the detector was varied from 340 gtR (-20% of

- N,:n-n A(n-ni+):ni(IDFT{Ad[x:n-ni]}12 )" sensor saturation) to 1630 mR (-100% saturation). The FPI
(24) was operated at 1.1 fps, synchronized with the x-ray genera-

tor such that x-ray pulses were delivered between frames

A requirement for convergence is that the synthesizing (i.e., radiation was not incident during detector read). Al-
aperture be of much greater extent than the corresponding though the frame rate was significantly less than that com-
effective apertures of the system. Choosing a synthesizing mon to clinical fluoroscopy, the purpose of this study re-
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quired only that projections were acquired in temporal above. As a check on normalization, the volume under the
succession [giving 3D image data in (x,yt)] with a given resulting NPS was compared to the mean pixel variance and
level of spatiotemporal correlation (blur and image lag). in all cases agreed to better than 1%. Central slice "strips"

The magnitude of temporal correlation (image lag) was S[fx] and S[fy] were taken from the average of the two
investigated by measurement of the impulse response func- central rows (columns) from the resulting NPS matrix.3 3 The
tion (IRF) and temporal transfer function (Tlag) as described effect of temporal correlation on the NPS was investigated as
previously 36 at 11 exposure levels ranging from -20% to a function of exposure level and number of frames flushed
-100% of sensor saturation. The response from an ensemble between projections. The bandwidth integral associated with
of 100 pixels distributed across the FPI was measured. For temporal correlation was computed from the temporal trans-
each IRF, 50 frames were read in the dark (giving the aver- fer function and compared to the observed differences in
age dark pixel values), a single x-ray pulse was delivered S~ffx,fy] at various levels of image lag.
prior to the 51st frame, and the signal decay was measured Finally, an idealized model was constructed to convey a
for an additional 50 frames. The procedure was repeated 5 simple rule of thumb regarding the effect of image lag on the
times, giving 500 IRFs for each exposure level. The NPS. The model considers a discrete time-sampled system
kth-frame lag was analyzed from the relative residual signal for which the detector response follows a simple exponential
in the kth frame following the radiation impulse: decay. While such a model describes typical FPI response

Siglk only in rough approximation, it gives a convenient, trans-

Laglk- S (25a) portable result for understanding the effect of temporal cor-
SigIk=O' relation on noise.

where Sigjk is the dark-subtracted pixel signal in the kth C. Case n=3: The volumetric NPS
frame following the radiation impulse. Laglk=I is the com-
monly reported first-frame lag. The transfer function associ- For volume images, the image domain is (x,y,z), with

ated with temporal correlation was computed from the Fou- the origin at the center of reconstruction (i.e., at the intersec-

rier transform of the area-normalized IRF:36  tion of the central ray of the beam and the axis of rotation),
x along detector rows, y along the direction joining the

TIag[ft] = IDFT{IRF[t]}I (25b) source and detector, and z along detector columns. An addi-

The spatiotemporal NPS was analyzed from three- tional 2 mm Cu filter was used, and the exposure per projec-
dimensional image data d[x,y,t] consisting of flood-field tion at the detector was varied from 100 /R (-5% satura-

projections acquired in temporal succession. Projections tion) to 860 /tR (-45% saturation). A rotation stage
were gain-offset corrected using 20 dark fields and 20 flood supporting the object was positioned at a source-to-axis dis-
fields acquired immediately prior. A 512 1024 region of the tance of 100 cm. As described previously, '0 projection im-
FPI containing few pixel defects was selected, and the re- ages were acquired at 1.20 angular increments through 360',
maining defects (-2000 pixels in total) were masked by 3 and volume images were reconstructed using the FDK algo-
m 3 median filter. Pixel values were scaled to units of charge rithm for cone-beam filtered back-projection. 39 Volume im-
(electrons) according to the manufacturer-specified calibra- ages were reconstructed from projections of a 20 cm diam-
tion. The magnitude of temporal correlation was varied by eter water cylinder and of air. Spatial correlation was varied

two means: (1) variation of the exposure; and (2) variation of through adjustment of the apodization window, Hw:n(f), ap-
the number of "dark" frames read between each exposure.
The second method corresponds to frame "flushing" or Hwin,(f) [hwin+ (1 - hwin)cos(27rTfxinc)], (26)
"scrubbing" 37,38 as a means of reducing correlation between
frames. The number of frames flushed between exposures, where f is the frequency domain associated with the
NflSh, varied from Ngl 5h= 0 (projections read in succession, x-direction in the detector plane (rows), and xin, is the sam-
with radiation incident for each frame) to Ngu5h= 30 (radia- pling step size of the detector elements. The apodization win-
tion delivered prior to every 30th frame, for which the degree dow was adjusted through variation of hwin, ranging from
of correlation between projections was negligible). 0.5 to 1. Special cases include hwin=0.5 (Hanning filter),

The NPS was analyzed from the fluoroscopic data via the hwin= 0.54 (Hamming filter), and hwin= 1 (Ram-Lak filter).
"extraction" method described above, where 2D projections The reconstruction filter, Hrccon(f), is the apodization win-
d[x,y] were extracted from the 3D data set [as in Fig. 2(b)]. dow times the ramp function.
This quantifies the effect of temporal correlation on the spa- The effect of the apodization window on volumetric spa-
tiotemporal NPS and shows the error (underestimation) in- tial resolution and noise was examined in volume reconstruc-
curred if such correlation is ignored. The method for NPS tions of a wire phantom, a water cylinder, and air. The wire
analysis was similar to that reported elsewhere,4' 6' 33 with re- phantom consisted of a 0.127 mm diameter stainless steel
alizations of 1OOX 100 pixels taken from each projection, wire suspended longitudinally (along z) in the water cylinder.
giving an ensemble of 2500 nonoverlapping realizations, Volume images of the wire phantom were reconstructed at
zero-mean detrended by subtraction of a planar fit. No taper- various settings of hwin, and the full-width-at-half-maximum
ing window16 was applied. The NPS, S[f, ,fy], was com- (fwhm) of the wire in transverse slices was computed. Simi-
puted from the ensemble average of 2D FFTs as described larly, the image noise (i.e., standard deviation in voxel val-
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ues) was measured from volume images of the water cylin- series of 2D grayscale images and as shaded-surface render-

der and air as a function of the apodization parameter, hwin. ings.
Volumetric NPS were first analyzed by the (first order) It is worth noting that acquisition and reconstruction of

"synthesis" method illustrated in Fig. 3(b). First, volume volume images is in fact, a 4D process involving x, y, z, and

images with 600X 600X400 voxels (0.25 mm voxel size) 1, since 2D projection views are acquired in temporal succes-

were reconstructed at various apodization, hwin. Examina- sion and then reconstructed in the volume domain; therefore,

tion of the mean and variance throughout the reconstructions the process involves the projection space domain (x,z), the

showed that wide-sense stationarity was satisfied to a far temporal domain (t) in which views are acquired at various

greater extent for images of air compared to images of the angles, and the volume domain (x,y,z) of image reconstruc-

water cylinder. For the air volumes, the mean voxel value tions. However, the result (i.e., the volume image) is strictly

was constant throughout the reconstruction, and the standard a 3D (and not a 4D) signal distribution. Volume reconstruc-

deviation in voxel values was constant within 5%. For the tion acts upon the projections in (xz) and exploits the angu-

water volume, the mean varied radially by up to -30% (due lar (temporal) domain to produce a third spatial domain for

to x-ray scatter') and the standard deviation varied by images in (x,yz). Therefore, there is no temporal dimension

-10% between the center of reconstruction and 10 cm off- to the volume reconstruction. However, correlation in the

axis (due to the lack of a bow-tie filter). Therefore, air vol- temporal domain during acquisition (e.g., due to image lag)

ume reconstructions were used in the NPS analysis. Imple- reduces the projection space NPS, and therefore the volumet-

mentation of scatter correction and incorporation of a bow- rie NPS as well. Reconstruction artifacts associated with im-
tie filter should improve stationarity and are subjects of age lag are discussed elsewhere. 38

ongoing work.
Second, the extent of the synthesizing aperture (i.e., the IV. RESULTS

length of integration along x, y, or z) required such that theresulting NPS was convergent upon a central slice of the 3D The methodological framework for NPS analysis is illus-
NPS was examined. The volume under the NPS analyzed for trated below for a variety of cases. In Sec. IV A, specific
various iegratione. lengts wvolum pere tothe voxazed var- cases are examined that make explicit the NPS normalization
variousince.A astiotic behavi was coberved in whichNPSvar for 2D and 3D imaging, illustrate the continuum nature of
vlnc reAn asedptwith itegration lengt, depvending onithe the factors associated with extraction and synthesis, and
volume increased with integration length, depending on thein
degree of correlation, and converged upon a value consistent gemodate (e analogy and utme imagIng(viz, 10mm, modalities (e.g., fluoroscopy and volume CT). In Secs. IV B
with the voxel variance. An integration length (and IV C, the measured NPS is reported for two cases of 3D
as shown in Sec. IV C) was selected such that the NPS vol- imaging-fluoroscopy and cone-beam CT-using methods
ume was convergent within 1% of the asymptotic limit for all of extraction, synthesis, and full nD analysis and examining
cases. This technique helps remove the subjectivity noted by the effects of correlation on the NPS.
Dobbins et al.33 regarding the synthesis technique and allows

one to quantify the degree to which the result is a convergent A. Framework for multidimensional NPS analysis

central slice of the NPS. For transverse realizations of 100 Table II illustrates the NPS framework for various mo-
X 100 voxels, this choice of synthesizing aperture gave a dalities. For radiography [(Xi 2 )=(X,y)], the input is a flu-
total of 6 X 6 X 10= 360 realizations for each volume recon- ence (mm- 2), and the NPS has units mm 2. The (bx /Nx) term
struction. As described above, each realization was zero- accounts for the finite-length realizations, and for analysis by
mean detrended by subtraction of a planar fit. The 2D central extraction ay accounts for correlation orthogonal to the ex-

slices of the NPS-S[fx ,f)I], S[f ,fJ], and S[fy ,fz], re- tracted data. The term ay is critical to ensure the result is a
ferred to as transverse, coronal, and sagittal NPS, meaningful central slice of the NPS. If there is no spatial
respectively-were computed by 2D FFT of realizations syn- correlation beyond that of the apertures in y, T(fy) is a sinc
thesized along the z, y, and x directions, respectively. Trans- function, and ay = ay. If correlation exists beyond the extent

verse, coronal, and sagittal central slice NPS are displayed as of the apertures, however, the bandwidth integral is the factor
grayscale images, and ID curves at various settings of h]win by which the result is reduced compared to the full 2D NPS,
were obtained by averaging the two central rows or columns and failure to account for the orthogonal correlation guaran-
within a central slice. tees an inaccurate NPS estimate. Similarly for analysis by

Finally, the full 3D volumetric NPS, S[f ,fyfz], was synthesis (viz., the synthesized slit technique), the term AY
analyzed by 3D Fourier transform. A total of (6 X 6 X 4 accounts for integration along the synthesizing aperture.
= 144) nonoverlapping 3D realizations of size 1OOX 100 For fluoroscopy, the input distribution is a fluence rate

X 100 voxels were taken from each reconstruction. Each was (mm- 2 s-1), and the spatiotemporal 4° NPS has units mm 2 s.
zero-mean detrended by a 3D polynomial fit, and the 3D FFT As shown in Table II, extraction yields the term a1 , which

was computed (using the fftn function in Matlab, The Math- accounts for correlation in the time domain as given by the
Works, Natick MA). Central slices of the 3D NPS were com- temporal bandwidth integral. If there is no temporal correla-
pared to the 2D transverse, coronal, and sagittal NPS ana- tion other than the sampling interval, a1 , the effective tem-

lyzed by the synthesis method (above) and found to agree poral aperture equals the sampling interval. If temporal cor-

within experimental error. The 3D NPS was viewed as a relation exceeds the sampling interval (e.g., due to image
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TABLE 1I. Illustration of the framework for multidimensional image NPS analysis for various modalities, including radiography (n=2), fluoroscopy (n
= 3), and volume CT (n=3). In each case, forms for the NPS analyzed by full nD DFT, extraction, and synthesis are shown. The bottom two rows illustrate
cases of higher-order extraction and synthesis, respectively, for generalized 3D image data.

Modality/ Image
dimensionality domain NPS units Analysis Noise-power spectrum

Radiography [x,y] mm 2  Full nD b by
(n"=2) S[il f,]= N- (IDFT{Ad[x'y]}l2 )

Extraction b , 2S[f,] =- a/%( DFT{Ad[x,Y]}I 12

Synthesis b.
S[fx]= T-Ay(IDFTIAd[x,y]}I 2 )

Fluoroscopy [x,yt] mm 2s Full nD bxbb
(n=3) Sift. ,' f]= (IDFT{Ad[x,y,t]1}2)

Extraction b xby2SEfxatn] ,]= ýy °t,(IDFT{Ad[x,y,t]}l2)

Synthesis bxbySynthesiss[.,fdf= b -NbA,(IDFT{Ad[x,y 't])12)

Volume CT [x,y.z] mm3  Full nD b bybh
(n=3) S[Lf,0f,f,]= MN (IDFT{Ad[x,y,z]} 1

2)
Extraction bxb,

S[fx f] = N-a5 (lDFT{Adtx,y,z]}12)

Synthesis b b
S[if ,fy]= N-- Az(IDFT{Ad[x,y,z]}l2 )

General (n=3) [Xi ,x 2 ,x 3 ] {xi} {x 2 } {x 3 } Second order bxl
extraction .s1l/]= C a.,2a.,3 (lDFT{Ad[xi ,x2 ,x3 ]}12)

Second order b1i
synthesis SL/'.,] = T, A, 2Ax3f(DFT{Ad[x1 ,X2 ,X311

lag), the bandwidth integral reduces the NPS, and a, is the than longitudinal correlation in the data. This case is demon-
correction factor such that the result represents a central slice strated experimentally in Sec. IV C.

of the spatiotemporal NPS. This case is demonstrated experi- Finally, Table II illustrates higher order extraction and
mentally in Sec. IVB. For synthesis, in which data are inte- synthesis. In each case, a linear combination of apertures
grated in the temporal domain (frame integration), A, is the accounts for extraction or synthesis, respectively, along each
time for which frames are summed, assuming that such is domain. Moreover, the framework provides a simple manner
much greater than the length of temporal correlation. of accounting for combined extraction and synthesis among

For volume CT, the input distribution is a number density various domains, with the integrals of Eqs. (19) and (24)
(rm- 3), and the volumetric NPS has units mm 3. As shown applied, respectively, in a building-block fashion for proper
in Table II, NPS analysis by extraction of transverse slices NPS normalization.
requires account of ac, the effective aperture in the z do-
main. If there is no longitudinal correlation beyond that of B. Case n=3: The spatiotemporal NPS
slice thickness, a, (e.g., in sequential, stacked slice CT) the
effective longitudinal aperture equals the slice thickness. If .
correlation exceeds the slice thickness (e.g., due to blur in Figure 4 summarizes the temporal response characteristics
the 2D detector), the integral reduces the transverse NPS and of the system. In Fig. 4(a), IRFs are plotted at three exposure
a• is the correction applied for the result to represent a cen- levels out to the 10th frame following the x-ray impulse.
tral slice of the full 3D NPS. Using Eq. (19), similar expres- First-frame lag is typically 5-8 %, comparable to results re-
sions can be written for extraction along other dimensions ported previously for other FPIs, (see, e.g., Table I in Ref.

(e.g., coronal or sagittal slices). Similarly, the "synthesized 36) and Lagtk increases with exposure. The curves are para-
slice" technique is shown in Table II, where 2D realizations metric fits based on Fig. 4(b), where the kth-frame lag is
are formed by integrating (averaging) along a synthetic ap- plotted versus exposure level. The top-most curve in Fig.

erture in z, and Az normalizes for the length of the synthe- 4(b) represents the exposure dependence of the first-frame

sizing aperture, assuming that this length is much greater lag, increasing from -5% to -8% across the sensitive range,
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FiG. 4. Temporal response characteristics of the FPI-based imaging system employed in this work. (a) Impulse response functions plotted at three exposure
levels corresponding to -20%, 50%, and 80% of sensor saturation. (b) The kth-frame lag, Lagik, plotted as a function of exposure level for various values of
k (k= I corresponds to 1st-frame lag, k=2 to 2nd-frame lag, etc.). The curves are linear fits that provide a convenient parameterization of the exposure-

dependent temporal response characteristics. (See text for details.) (c) Temporal transfer functions, Tlag(fO), computed for the example IRFs in (a). The

abscissa is the temporal frequency relative to the Nyquist frequency such that the temporal bandwidth integral [frame-'] and effective temporal aperture

[frames] give the correction factor associated with temporal correlation.

and the lower curves show the behavior for higher values of where Tlag(ft) is seen to decrease with increasing levels of
k-e.g., the 10th-frame lag nearly constant at -0.12% across image lag. The frequency axis shown is dimensionless (i.e.,
the sensitive range of the detector. The exposure dependence frame-, with fNyq= -). Earlier work36 showed that such
of Lagik is well described by linear fits of the form temporal correlation is dominated by the charge trapping and
Lag1J(Xs5 t)=mXs5 t+b as shown by the curves in Fig. 4(b), release characteristics of the a-Si:H detector elements 41

where Xsa, is the abscissa (fraction of saturation), providing a rather than afterglow in the x-ray converter or incomplete
convenient parametrization of the exposure-dependent tem- charge transfer in the readout electronics.
poral response characteristics. For k= 1, Lagi chare 5ashows the geadotele nis.
=(l.5l)X5 5 ,+5.70; for k=2, Lag 12 =(0.46)X5 at+l.02; for Figure 5 shows the spatiotemporal NPS measured from
k=3, LagI3 = (0.27)Xsat+0.49; for k= 5, Lag15  fluoroscopic data by extracting projections d[x,y] from the

=(0.l4)Xsat+0.25; and for k= 10, Lagl 10=(0.05)Xsat fluoroscopic sequence and correcting by the temporal band-

+ 0.12. The m-values (slope) quantify the exposure depen- width integral as in Eq. (19). A 2D central slice of the NPS,

dence, and the b values the intrinsic offset in kth-frame image S[f. ,fy], is shown in Fig. 5(a) for the lag-free case (i.e.,
lag in the limit of low exposure. The temporal transfer func- Nflh= 30, giving negligible temporal correlation) at an ex-
tions for the three IRFs in Fig. 4(a) are shown in Fig. 4(c), posure level ofXsat= 20%. The NPS was found to agree with

,2L aXOr6 1

lLag-1% •% 1.3
0-- Lag -6% -0 .81.0.5 ... BW~

Q X.~0 1.-50%0%

-~ 5

. ........
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FtG. 5. The spatiotemporal NPS analyzed by extraction. (a) A 2D central slice in the spatial-frequency domain, S~fx ,fj], exhibits the band-limited NPS

characteristic of indirect-detection FPIs. The magnitude of the spectral density implied by the grayscale representation is evident in the top-most curve of (b)

(the Xst- 20%, Lag-free case). (b) Relative NPS measured at three exposure levels (fraction of saturation, Xsat, -20%, 50%, and 80%) and three levels of

temporal con-elation (Lag-fl-ce, Lag- 1%, and Lag- 6%, grouped by the superimposed ellipses. Temporal correlation is seen to reduce the NPS uniformly at

all fr-equencies, in agreement with the discussion of Sec. II C. (c) Temporal bandwidth integral (left axis) and corresponding effective temporal aperture (right

axis) plotted as a function of exposure level. The points correspond to ratios of the NPS in (b), and the curves are calculations based on the measurements in

Fig. 4. Agreement between the two gives experimental validation of the approach described in Sec. lI C.
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prediction from a simple linear cascaded systems model,4  (14-)

with spatial-frequency-dependence determined by the char- TVf 1=- I e-7 (27b)

acteristic MTF of the x-ray converter and the sine function
MTF of the pixel apertures. There is no evidence of corre- (1 - ()
lated noise (streaks in the NPS), and the slight rolloff near T 2 [f]= 1 -2X cosf+X2  (27c)
zero-frequency is an artifact of zero-mean detrending.

In Fig. 5(b), three groups of NPS measurements are plot- The temporal bandwidth integral is obtained by integrating

ted (exposure levels, Xsa,- 20%, 50%, and 80%), where each Eq. (27c) over the frequency domain, giving

group contains the NPS measured at three levels of temporal 1- [1 -- X ( fNyq .

correlation: (1) Lag-free (Nflush= 30 and temporal correlation BWI, = -4 tan- [ tan I -I ]t. (27d)

is negligible); (2) Lag -- 1% (NfluSh= 1 and correlation is
- 1-2 %, depending on exposure level); and (3) Lag -6% Taking the dimensionless frequency domain (frames) as de-
(Nfulh= 0, i.e., projections read continuously with x-ray ex- scribed above such that fNyq= ½ and using a trigonometric
posure incident on every frame, and correlation is -6-8 %, series expansion for tangent, we have to first order

depending on exposure level). In each case, the relative NPS 1 tI1-Lagl 2
is shown-i.e., the NPS divided by the mean signal BWI=I = - (27I
squared-which decreases with exposure level. As expected a, 1 + Lagi / (27e)

for the Lag-free case the absolute NPS increases linearly Equation (27e) is a quick rule of thumb for the NPS cor-
with exposure level. For each group, the Lag-free case ex- rection due to image lag, where the response function is fully
hibits the highest spectral density, and the Lag - 1% and Lag characterized by the first-frame lag, Lagi 1 . For example, for
-6% cases exhibit progressively lower NPS density due to a detector with LaglI = 1%, the correction is a,= 1.04; simi-
increased temporal correlation. Note that for the higher-lag larly, for Lagij=2%, 5%, and 10%, the correction is a,
cases, the NPS is reduced uniformly at all spatial frequencies = 1.08, 1.22, and 1.49, respectively. Therefore, even a rela-
relative to the Lag-free case. This agrees with the description tively low degree of image lag (e.g., -2%), results in appre-
of Eqs. (14)-(19) and with intuition, since the temporal do- ciable reduction of the NPS (e.g., -8%). Furthermore, this
main in which these correlations are introduced is separable factor is the amount by which DQE or NEQ would be over-
from the spatial domain. estimated if the effect of temporal correlation is ignored.

Figure 5(c) demonstrates the effect of temporal correla- While the response of FPIs is typically more complicated
tion on the NPS, where the temporal bandwidth integral than a single exponential,38'43 the model is easily adapted to
[BWI, in Eq. (17a); left axis] and effective temporal aperture a multiple exponential model, since a sum of exponentials
[a, in Eq. (17b); right axis] are plotted as a function of (e.g., characterized by Lagil, Lag12 , Lag13 , etc.) corre-
detector signal. The bandwidth integral (units of frame-1) sponds to a sum of temporal transfer functions.
corresponds to the integral of the transfer functions in Fig.
4(c). The temporal aperture, therefore, corresponds to -1.2 C. Case n=3: The volumetric NPS
frames. The points plotted represent the ratio of the measured Figure 6 summarizes the variation in spatial correlation in
NPS in the high-lag (Lag -6%) case and in the Lag-free volume reconstructions and the corresponding effect on spa-
case. [See Fig. 5(b) for the three exposure levels (Xsat tial resolution and NPS. Figure 6(a) plots the apodization
-20%, 50%, and 80%)]. The curves are calculations of the window, Hwin, at settings of hwin ranging from 0.5 to 1. The
temporal bandwidth integral based on the parametrized IRF reconstruction filters, Hrmcon, are plotted as dotted curves.
and Tiag measurements in Fig. 4, showing reasonable agree- Variation of hwi, adjusts the degree of spatial correlation in
ment with the measured reduction in NPS and providing ex- the (xy) domain and was used to investigate the effect of
perimental validation of the approach described in Sec. II C. correlations on the volumetric NPS (analogous to the results

of Sec. IV B regarding the effects of temporal correlation on
the spatiotemporal NPS). Figure 6(b) shows the effect of the

2. A simple model for image lag and NPS apodization filter on basic measures of spatial resolution and
noise. The left axis plots the fwhm in images of a thin wire in

A simple model for the effect of image lag on the NPS the (xy) domain, showing that spatial resolution in the trans-
can be constructed that does not rely on the FPI-specific verse plane improves from -- 0.65 mm for a Hanning filter to
parameterization of image lag measured above, but is ideal- -0.3 mm for the Ram-Lak filter. The result asymptotically
ized to the case of a simple exponential response. For the approaches -0.25 mm, which is the detector pixel size at
one-sided, discrete time-sampled, exponential signal,42 one isocenter. Conversely, the right axis shows the increase in
has Siglk= Xk, where X is the first-frame lag (i.e., the residual noise for sharper apodization windows, increasing by a fac-
signal in the first frame following exposure), and the residual tor -2 between the Harming and Ram-Lak filters.
signal in the second, third, etc., is X2, X3, etc., respectively. In Fig. 6(c), the effect of apodization on NPS convergence
The normalized IRF is is illustrated by plotting the volume of the NPS (normalized

p[k] =(I -X)Xk (27a) by voxel variance) versus the synthesizing aperture, Ay, for
various settings of hwin. The solid curves correspond to the

and the corresponding transfer function is42 coronal NPS in which synthesis is performed along y. The
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FIG. 6. Transverse spatial correlation in volume CT reconstructions. (a) Apodization windows, Hwin,, and reconstruction filters, Hrecon, for various settings of
the apodization parameter, hwj,,. Spatial correlation in the transverse plane of image reconstructions (x,y) was controlled through variation of apodization from
hw1n= 0.5 (Hanning filter) to hwn 1 (Ram-Lak filter). (b) Effect of apodization on basic measures of spatial resolution and noise, the former characterized by
the full-width at half-maximum of the point-spread function (left axis) and the latter measured in Hounsfield units, HU (right axis). Higher values of hwi

correspond to reduced spatial correlation (i.e., improved spatial resolution) in the transverse plane at the expense of image noise. (c) Convergence of the

central slice NPS analyzed by the synthesis technique. The volume of the computed NPS (normalized by the image variance) is plotted versus the length of

the synthesizing aperture for various settings of hw, Solid lines demonstrate convergence for cases of synthesis along y (i.e., analysis of the coronal NPS),
with the corrcsponding hw1n values shown at the left of each curve. The dotted line with open circles is for synthesis along z (i.e., analysis of the transverse
NPS), which was independent of hwn An aperture length of 10 mm was chosen in order to give convergence in all cases (i.e., computed NPS volume within

1% of the true variance).

solid curve with solid circles is for hwin= 0.5, showing that tion, exhibiting a low-pass characteristic resulting from Ion-

for Ay,<5 mm (<20 voxels), the result underestimates the gitudinal correlation (blur and interpolation in the projection

NPS. The thin solid curves also correspond to synthesis data). Such dependence in fz is reasonable, since ramp and

along y, but for volume images reconstructed using various apodization filters are not applied in z. Moreover, the result is

apodization windows, with the values of hwin shown at the different from what might be expected, e.g., for a set of

left. Note that for larger settings of hwin [i.e., reduced corre- stacked slices in conventional CT, in which case the longitu-

lation in (x,y)] the NPS converges more quickly. Also shown dinal component of the NPS is constant (i.e., "white").
is the transverse NPS in which synthesis is performed along Choice of apodization affects the magnitude, but not the

z (dotted line with open circles), where convergence is inde- shape, of the longitudinal NPS, since the apodization filter

pendent of hwin, since the apodization window does not af- operates in a domain orthogonal to z [in a manner analogous

fect correlation in z. Convergence of the transverse NPS (i.e., to Fig. 5(b), where image lag was found to affect the mag-

synthesis along z) is more gradual than convergence of the nitude, but not the shape, of the (fx,.fy) components of the
coronal NPS, suggestive of asymmetry in the 3D spatial spatiotemporal NPS]. Noterthe difference in scale between

resolution. To ensure convergence in all cases (NPS volume Figs. 7(a) and 7(b), with the various central slice representa-

within 1% of the voxel variance), a synthesizing aperture of tions of the 3D NPS sharing a common scale value at fh
10 mm (40 voxels) was chosen. =fy=fz=O mm-e. As noted by Kijewski et a(.4 5 the non-

Figure 7 summarizes the volumetric NPS analyzed by zero scale value is attributed to aliasing-in this case 3D

synthesis and full 3D FF1. Figure 7(a) shows central slice aliasing46 of the NPS in the 3D Fourier domain of the volu-

cuts of the transverse NPS at varying apodization, and a metric sampling matrix. As shown in Fig. 7(c), apodization

characteristic "filtered-ramp" spectrum similar to conven- has a measurable effect on the NPS scale value (i.e., on the

tional CT,34'44'45 is observed in which NPS increases at low amount of aliasing), increasing from -10.1 mm3 for hlwin

frequencies (due to the ramp filter) and rolls off at higher =p0.5 (Hanning) to -12.2 mm3 for hwn 1 (Ram-Lak). Also

frequencies (due to band-limiting processes, such as blur, shown are the moderate effect of apodization on mid-
apodization, and interpolation). The correlation imposed by frequency noise [i.e., spectral density at ( ,t= 0.5 mm-Isfy

apodization has a strong effect on the transverse NPS, con- =ff= 0 mm-)] and the large effect near the Nyquist fre-

sistent withate transfer functions in Fig. 6(a), with an in- quency [i.e., at (wfi = 2 lm n;ft=f=-0m - )].

crease in high-frequency noise for increasing hwic . The mag- Te transverse and coronal NPS are illustrated in Figs.

nitude and slope of the low-frequency NPS are nearly 7(d) and 7(e) for hwoin= 0.5. Separate grayscales were applied
independent of hl, in agreement with Hanson,o r who to accentuate contrast in each case. The NPS magnitude ima -

showed that the slope of the low-frequency NPS is propor- plied by the gray values is evident in the plots of Figs. 7(a)

tional to NEQ; therefore, the NEQ is unaffected by the and 7(b), respectively. The transverse NPS is radially sym-

apodization to first order. metric and spectrally "green" (i.e., the spectrum is greatest

Figure 7(b) shows the coronal NPS at varying apodiza- at mid-frequencies), characteristic of reconstruction employ-
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FIc. 7. The volumetric NPS analyzed by synthesis (a)-(e) and full 3D analysis (f). In (a) and (b), central slice cuts of the transverse and coronal NPS-S[fx.]
and S[f,], respectively-are shown at various settings of apodization filter. The apodization parameter, hwi , corresponding to each curve is shown in the
legend of (b). (c) Spectral density at various spatial frequencies in the transverse plane as a function of hwin. Note in particular the slight increase in the
zero-frequency NPS value with increasing hwin, attributable to increased NPS aliasing for cases of reduced spatial correlation. In (d) and (e), the central slice
transverse and coronal NPS are represented as grayscale images for the case hwin=0.

5
. [The relationship between spectral density and grayscale is evident in

comparing to the respective curves in (a) and (b).] The transverse NPS is radially symmetric and spectrally "green" (i.e., peaking at mid-frequencies),
characteristic of images reconstmcted using a ramp filter. The coronal NPS is highly asymmetric-"green" in the transverse domain and "red" (i.e.,
band-limited) in the longitudinal direction--characteristic of images reconstructed by cone-beam filtered back-projection. (f) Shaded surface rendering of the
full 3D NPS with cut-planes introduced in the first octant to allow visualization of the spectral density within the shaded surface. Frequency axes are as
labeled, and the region displayed (including black areas outside the windowed surface) corresponds to the full 3D Nyquist region.

ing a ramp filter in combination with band-limiting processes V. DISCUSSION AND CONCLUSIONS
such as interpolation. The coronal NPS is highly asymmetric, The methods described above provide a general frame-
exhibiting noise characteristics that are "green" in the fX work for NPS analysis of multidimensional image data. For
direction and "red" (i.e., high spectral density at low fre- example: taking n = 2 for the domain (xy) describes the fa-
quencies) in the f, direction. This highly asymmetric 3D miliar case of NPS analysis of 2D projections; taking n = 3
NPS is characteristic of cone-beam CT images reconstructed for the domain (x,y,t) describes the spatiotemporal NPS of
using filtered back-projection, where the ramp and apodiza- fluoroscopic data; similarly, taking n = 3 for the domain
tion affect correlation in the transverse plane, but correlation (x,y,z) describes the volumetric NPS of volume image recon-
in the longitudinal direction is governed by (1) the structions. For all cases, the framework illustrates the conti-
fr-component of the 2D detector MTF; and (2) interpolation nuity between analysis of the full nD NPS and techniques
of the projection data in (xz) upon reconstruction. For pur- that analyze a "central slice" of the NPS, highlights the ef-
poses of visualization, the 3D NPS is shown in Fig. 7(f) as a fects of correlations on the NPS, and makes issues of nor-
shaded surface rendering. The 3D domain in the figure cor- malization and units transparent.
responds to the full 3D Nyquist zone, with grayscale window The methods for full nD and central slice NPS analysis
similar to that in Fig. 7(d) and cut-planes to allow visualiza- are summarized in Table III. In each case, the normalization
tion of the spectral density within the surface. There is no associated with finite-length realizations is given by Wdniormte

evidence of off-axis noise features beyond that described by as in Eq. (11). For central slice NPS analysis by extraction,
the three central slice representations. the normalization WcnXt incorporates the bandwidth integral
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TABLE 111. Summary of methodological forms and normalization factors for NPS analysis. For discrete measured data, e.nioeret gives normalization for the full

nD NPS analyzed by nD discrete Fourier transform. For the NPS analyzed by extraction and/or synthesis along various domains, the terms WXrrmct and ynth

are applied as appropriate to the extracted and/or synthesized domains. See Table II for specific cases of 2D and 3D data.

NPS analysis Equation Normalization Noise-power spectrum

Discrete, finite-length data (12) 14iiscrete=... = n (IDFT{Ad[x,:o]}1 2 )
9norm Nl:n0  N,

Central slice: Extraction (19) xt _a( m+ 1):n bL .W~norm - °•(-m+ I:n bln-mNI .... _ a otm+,,,+):,,(IDFT{Ad~ixi ..... ]}1 )

Central slice: Synthesis (24) fy ,,tl n+ 1):n, b - ,n
•o•, A(.m+ I:. I n-m

S[fi:nm]= NIn A(om+,):,(IDFT{Ad[xi:n-m]}I2)

associated with correlations orthogonal to the extracted data the volumetric NPS of cone-beam CT images and its distinc-
as in Eq. (18). For central slice NPS analysis by synthesis, tion from that of "stacked-slice" CT images could have im-
the normalization W!"t accounts for the extent of the syn- plications for the detection of structures in volume data, sug-
thesizing aperture as in Eq. (23). The techniques of extrac- gesting that detectability' may vary, depending on the plane
tion and synthesis are seen to be limiting cases of the same in which a given structure is visualized. Such effects are
basic approach-the former fully incurring correlations or- subjects of ongoing work.
thogonal to realizations, and the latter negating such correla- The general framework provides a unified approach to
tions by integrating across orthogonal domains. NPS analysis of multidimensional image data, reducing to

The specific cases in Table II are relevant to current in- familiar cases for 2D images (e.g., projection radiography)
vestigations in multidimensional imaging-viz., fluoroscopy and allowing direct application to 3D images (e.g., fluoros-
and cone-beam CT. For fluoroscopy, it is important to note copy, CT fluoroscopy, and cone-beam CT) and 4D images
that the image data is three dimensional in (x,y,t), with sig- (e.g., volume fluoroscopy). It highlights the effect of corre-
nificant correlation possible in all three domains [e.g., in lation on the NPS and quantifies how spatial and temporal
(x,y) due to image blur and in t due to image lag]. Corre- correlations (e.g., blur and lag) are accommodated in NPS
spondingly, the NPS is spatiotemporal in nature, 40 and is analysis. Furthermore, the approach renders issues of NPS
described by the general framework in the special case n normalization transparent, giving absolute measure of the
=3 [(Xj:3)=(x,y,t)]. The measurements presented here NPS without recourse to self-normalizing techniques, 47

demonstrate that analysis of the spatiotemporal NPS requires which in turn is applicable to absolute measures of imager
account of temporal correlation. For the FPI-based system performance, such as NEQ.
employed, with (first-frame) image lag -5-8 % [see Fig. 4],
the correction factor is - 1.2 [Fig. 5(c)]. A simple model for
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ABSTRACT

The development of new detectors for diagnostic x-ray imaging is a complex and expensive
endeavour. An understanding of fundamental performance potential and limitations is therefore critical to
the wise allocation of research resources. We present a Monte Carlo study in which the fundamental spatial
resolution limitations imposed by x-ray interactions were determined for both direct conversion amorphous
selenium (a-Se) and indirect conversion cesium iodide (CsI) detectors. Using a simulated infinitesimal
x-ray beam, the absorbed energy point spread function (PSF) in each detector material was scored within
rectilinear bin sizes of 5 j.m for incident x-ray energies between 10 and 100 keV. The modulation transfer
function (MTF) was determined from each simulated PSF and characterized in terms of the 50% MTF
frequency, f5o, and the equivalent passband, N,. Both materials demonstrated: (i) a drop infso (a-Se: 25%,
CsI: 85%) and Ne (a-Se: 45%, CsI: 75%) immediately above the K-edge energy due to re-absorption of
characteristic radiation, and (ii) a moderate recovery off 50 and N, levels with further increase in energy. In
addition, within the diagnostic energy range and spatial frequency range of 0 - 20 cycles/mm, the values of
the fundamental MTF due to x-ray interactions remain above 50%. In general, we conclude that existing
amorphous selenium and cesium iodide detectors operate far from fundamental spatial resolution limits in
both mammography and radiography applications. Further reduction in detector element size will
potentially improve spatial resolution in these detectors.

Keywords: x-ray interactions, amorphous selenium, cesium iodide, Monte Carlo simulation, MTF

1. INTRODUCTION

Over the past decade, dramatic improvements have occurred in the performance of digital detector
technology for medical imaging'. The motivation for advancing towards a digital approach stems from a
further need to improve image quality, reduce patient dose, increase patient throughput in the imaging
centre, and decrease overall costs. The most promising digital system to date has been the flat-panel (FP)
detector2. The FP detector is based on a large-area active-matrix readout structure, made from amorphous
silicon. Coupling the active-matrix component to a traditional x-ray converter material, such as a
photoconductor or phosphor, forms the basis of the detector.

The difference between photoconductors and phosphors is important since the type of x-ray converter
material will dictate the overall performance of the digital detector 2. A photoconductor is generally referred
to as a direct x-ray conversion material because x rays are directly converted to electrical charge with no
intermediate stage. In contrast, a phosphor is designated as an indirect x-ray conversion material because
x rays are first converted to optical light, then finally to electrical charge. The most popular photoconductor
and phosphor materials in practice or in development include amorphous selenium and cesium iodide,
respectively.

When designing a new x-ray imaging system, the general requirements of the detector depend on the
imaging task. One important requirement is high spatial resolution, which is especially necessary in: (i)
mammography3 to visualize fine-details of micro-calcifications and thin fibres protruding from a tumour
mass in the breast, and (ii) micro-computed tomography 4 (CT) to visualize the intricate anatomy of small
animals (e.g. mice).

I



The factors that limit spatial resolution in a digital detector depend upon the technology used. In digital
detectors using either a photoconductor or scintillating phosphor, spatial resolution is generally limited by
detector element (del) size and optical light dispersion, respectively. However, from a fundamental
point-of-view, the physical nature of x-ray interactions determines the upper bounds on spatial resolution.
Incident x-ray energy is not transferred and absorbed on the spot within a detector material. Rather, x-ray
interactions produce secondary radiation that spreads the incident x-ray energy away from the primary
interaction site. The spread of energy is attributed to a combination of: (a) re-absorption of fluorescent or
scatter x rays, and (b) deposition of energy along charged particle tracks.

Several theoretical studies have been performed on the intrinsic spatial resolution of converter
materials used in diagnostic x-ray detectors. Two in particular deserve attention. Que and Rowlands 5' 6 have
used analytic calculations to isolate the main factors that limit spatial resolution in amorphous selenium,
based on estimations of the MTF in the diagnostic energy range. They found that re-absorption of
K-fluorescent x rays significantly degraded the MTF. Boone et al.7 used Monte Carlo simulations to study
the effects of x ray scattering and x-ray fluorescence in a wide variety of x-ray converter materials (e.g.
a-Se, CsI, Gd 2O2S). They determined the radial distribution of re-absorbed x-ray energy, but did not
associate the results with the modulation transfer function.

Photoconductors and phosphors have been studied and developed for many years and have reached a
high level of optimization. The question at this point is which technology has potential for further
improvements? In particular, which approach has the greatest potential for achieving high-resolution
images in areas demanding improved performance (e.g. mammography or small-animal imaging). In this
article, we use Monte Carlo simulations to examine the fundamental limitations imposed by the various
x-ray interaction processes on the modulation transfer function (MTF) for typical direct (amorphous
selenium) and indirect (cesium iodide) conversion detector materials used in mammography and
radiography. For each type of converter material, the importance of each x-ray interaction process is
identified as a function of x-ray energy. In addition, recently published MTF data for each material is
compared to simulated MTF data, in order to evaluate whether existing digital detectors based on these
conversion materials are close to being "x-ray interaction limited".

2. THEORY

In the diagnostic x-ray energy range (10-100 keV), the relevant x-ray interaction processes are
photoelectric absorption, Rayleigh scatter and Compton scatter. The relative probability of occurrence for
each interaction is presented in Fig. 1 as a function of x-ray energy for both selenium and cesium. As seen
from the graph, photoelectric absorption is dominant over the entire diagnostic energy range. At energies
below the K-edge of a given material, Rayleigh scatter is significant, while Compton scatter is negligible.
Immediately above the K-edge, both Rayleigh and Compton scatter are negligible compared to
photoelectric events, but steadily increase with x-ray energy thereafter.

2.1 Photoelectric absorption

In the photoelectric effect, an atom fully absorbs an incident x ray, and then ejects an electron from an
atomic shell9'1 °. The most probable shell from which the photoelectron is emitted is generally the most
tightly bound shell of the atom. Following the emission of the photoelectron, the atom is left in an excited
state, and returns to the ground state through a cascade of electron transitions, resulting in the isotropic
emission of characteristic (fluorescent) x rays and Auger electrons. Since x-ray detectors are generally
made from high atomic number materials, the method of atomic relaxation most likely occurs through
fluorescent emissions. A photoelectric interaction involving the K-shell of the atom, given the incident
x-ray energy is larger than the binding energy of the K-shell (i.e. K-edge), has the greatest impact in
degrading image quality. Filling an electron vacancy in the K-shell leads to the emission of a K-fluorescent
x ray, which in turn has significant energy to either interact a large distance away from the initial
photoelectric interaction site or escape the detector medium entirely.
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Figure 1 Relative probability of each x-ray interaction as a function of diagnostic x-ray energy for
selenium and cesium8

Quantity Selenium Iodine Cesium
K-fluorescent Yield [%] 60 88 90

K-edge Energy [keV] 12.658 33.169 35.985
Average K-fluorescent Energy [keV] 11.858 30.451 32.977

Average K-fluorescent Mean Free Path [gm] 75.4 267.9 288.2

Table 1 Fluorescent relaxation data for selenium, iodine, and cesium"1

2.2 Rayleigh scatter

Rayleigh scatter involves an interaction of an incident x ray with all the electrons in the atom 9. The
electric field of the incident x ray causes these electrons to vibrate in synchrony, and subsequently, emit
radiation that combine to form an x ray that departs the atom at an angle relative to the incident x ray.
Large scatter angles occur at low x-ray energy and in high atomic number detector materials. Rayleigh
scatter is referred to as an elastic (coherent) process because the departing x ray possesses the same energy
as the incident x ray. Therefore, since the atom is neither excited nor ionized, no direct absorption of energy
will result.

2.3 Compton scatter

Compton scatter involves a collision of an incident x ray with a 'loosely' bound electron 9'10 . The
incident x ray is scattered, with reduced energy, at an angle with respect to the original direction. Some
fraction of the incident x-ray energy is transferred to the electron, which recoils in a direction within the
same plane as the scattered x ray. Large scatter angles for the x ray occur at low x-ray energy. In contrast to
Rayleigh scatter, Compton scatter is referred to as an inelastic (incoherent) process because the scattered
x ray does not retain the same energy as the incident x ray.

2.4 X-ray interactions and spatial resolution

Depending on the energy of the incident x ray and the physical properties of the detector material, the
secondary radiation (i.e. scatter/fluorescence photons and charged particles) from the above interactions
can significantly degrade spatial resolution. Loss of spatial resolution is attributed to the 'blurring' or
'spreading' of the incident energy away from the primary interaction site. The degree of spread depends not
only on the energy of the secondary radiation, but the direction that the radiation is launched from the
primary interaction site. Both of these factors ultimately affect whether the radiation is re-absorbed by the



detector material. The angle from which the radiation departs the primary interaction site is generally a
complex function of radiation energy and detector composition (e.g. atomic number). Hence, Monte Carlo
methods are required to properly simulate and isolate the effects of the x-ray interaction processes on
spatial resolution.

In the diagnostic x-ray energy range, the kinetic energy of electrons produced in photoelectric or
Compton interactions is low enough to assume that the deposition of energy essentially occurs at the
primary interaction site (the range of electrons in typical detector media is on the order of 1-20 pm)12.
Therefore, the main cause of spatial resolution degradation is attributed to the re-absorption of secondary
x rays (the mean free path of K-fluorescent x rays is on the order of 100-300 Pm)' 3.

3. METHODS

3.1 Monte Carlo code and detector geometry

The latest version of the Electron Gamma Shower (EGSnrc) Monte Carlo code1 4' 15 was used to
determine the absorbed energy distributions for diagnostic x rays incident on common x-ray converter
materials. The user code DOSXYZnrc simulated the coupled photon-electron transport within a rectangular
slab geometry and scored the amount of energy deposited within the detector volume for each photon
history.

The modeled detector geometry, shown schematically in Fig. 2, consisted of an infinitesimal pencil
beam of photons incident perpendicularly on a planar slab of x-ray converter material. Each slab was
subdivided into 1025 x 1025 voxels, whereby each voxel had a planar area of 5 x 5 [m

2 (slab area of
0.5125 x 0.5125 cm 2). Two types of x-ray converter materials were modeled in our study: (i) amorphous
selenium, and (ii) cesium iodide. Two different converter thicknesses for each material were considered
that would be commonly found in existing digital x-ray detectors used in mammography and radiography
(a-Se: 250 pm and 500 pm, CsI: 150 pm and 500 gm, respectively). The appropriate density for each
converter was chosen to account for the physical nature of each material (a-Se: 4.20 g/cm 3, CsI: 4.51
g/cm

3).

3.2 Scoring the spatial distribution of absorbed energy

Monte Carlo simulations were used to generate dose deposition maps, d(x,y), which represent the
two-dimensional spatial distribution of energy absorbed within the detector material. These maps form the
basis of the two-dimensional point spread function (PSF), p(x,y), when normalized to unit area (see
Eqn. 1).

d (x, y)

f fdd(x,y)dxdy (1)

Dose deposition maps were determined for each x-ray converter material at several monoenergetic x-ray
energies, ranging from 5 keV to 100 keV, in approximately 5 keV intervals. These energies adequately
represent the different energies encountered in mammography and radiography x-ray spectra. Each Monte
Carlo run simulated the transport often million x-ray histories, which was sufficient to reduce the statistical
uncertainty in the dose deposition maps to less than 1% in voxels with dose values within two orders of
magnitude of the maximum value.

3.3 Modulation transfer function

The modulation transfer function (MTF) is an important objective measure of the spatial resolution in
an imaging system. Due to the inherent azimuthal symmetry in the dose deposition maps, the PSF was
transformed into a one-dimensional radial profile, p(r). Therefore, based on p(r), the modulation transfer
function, MTF(u), was calculated using the zero-order Hankel transform16 (see Eqn. 2). As a reminder, the
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Figure 2 Detector geometry modeled in the Monte Carlo simulations. Two different thicknesses, t, for each
detector material were used (a-Se: 250 and 500 um, Csl: 150 and 500 um).

MTF calculated from the Monte Carlo simulations only represents contributions from the spread of energy
from fundamental x-ray interactions.

MTF (u) = 2r f p (r) Jo(2nur) r dr (2)

3.4 Equivalent passband

Representation of the spatial-frequency-dependence of the MTF and the x-ray energy dependence of
the x-ray interaction processes for a given detector material requires an appropriate figure of merit for
grading the spatial resolution. We chose to use the 50% MTF frequency, fJ•, and the one-dimensional
equivalent passband"7, Ne. In our opinion, the equivalent passband is a more robust parameter because it
represents the area under the squared MTF over all spatial frequencies (see Eqn. 3). In other words, the
shape of the MTF is implicitly incorporated into the equivalent passband figure of merit.

N= f MTF= (u)du (3)

Since in our case the MTF is an even function, the equivalent passband can be re-written (see Eqn. 4).

N, =2 fMTF2(u)du (4)

In practice, the MTF cannot be determined to infinite frequency, so we choose to integrate the squared
MTF up to the first zero crossing frequency,fi (see Eqn. 5). This is a valid assumption because most of the
area (over 90%) under the squared MTF occurs within the first lobe.

N, =2 f 'MTFf (u)du (5)



3.5 Comparison with experimental data

To assess the impact of the fundamental spatial resolution limits on existing amorphous selenium and
cesium iodide detectors, a comparison of modulation transfer functions was made between results of Monte
Carlo simulations and published experimental measurements. Additional Monte Carlo simulations were
needed to match the imaging conditions listed in Table 2. In the simulations, the incident x-ray energy was
chosen to be half the maximum x-ray energy in the experimental spectra.

Imaging Detector X-ray Beam Detector Detector Nyquist
Task Material Quality Thickness Element Size Frequency

[kVp [Im] [Igmi [mm"']

a-Se 18 28 200 85 5.88Mammography CsI 20,22 28 146 100 5.00

a-Se 19  70 300 134" 3.73Radiography CsI 21,22 80 350 200 2.50

Table 2 Parameter summary ofpublished imaging systems based on amorphous selenium (Rowlands
group) and cesium iodide (Granfors group) detectors. The asterisk indicates an approximate size for the

asymmetric detector element.

The experimental MTFs reported in the literature represent pre-sampled values, while the MTFs
(MTF,,,I) from Monte Carlo simulations represent only the contribution from x-ray interactions. In order to
allow for comparison with experimental results, MTF,,I must be adjusted to account for the digital nature of
the existing detectors. The Monte Carlo pre-sampling MTF (MTFpre) is obtained including the aperture
effect due to the real detector element size (ada,,) (see Eqn. 6).

MTFPre (u) = A4TJý,, (u) x sinc(ra1,c u) (6)

The Monte Carlo pre-sampling MTF does not include the effect of optical light scatter in CsI and other
effects that might degrade the MTF further.

4. RESULTS AND DISCUSSION

4.1 Interaction MTFs for amorphous selenium and cesium iodide

The Monte Carlo "interaction" modulation transfer functions for amorphous selenium and cesium
iodide are shown in Figs. 3 and 4 respectively. In each figure, two different x-ray energy ranges and
detector thickness are presented characteristic of mammography and radiography. Furthermore, only a
select number of MTFs (each based on a single monoenergetic x-ray energy) are plotted to highlight the
changing influence of the x-ray interactions at each x-ray energy. Table 3 summarizes the primary cause(s)
that limit each MTF in Figs. 3 and 4.

Detector X-ray Energy Main Cause of MTF Degradation
Material JkeVi

10 * re-absorption of L-fluorescent and coherent
scatter x rays

Amorphous 13 * re-absorption of K-fluorescent x rays
Selenium 30 a re-absorption of K-fluorescent x rays

100 ° re-absorption of Compton scatter x rays and
deposition of photoelectron kinetic energy



Detector X-ray Energy Main Cause of MTF Degradation
Material [keVj

20 • re-absorption of L-fluorescent and coherent
scatter x rays

Cesium 36 • re-absorption of K-fluorescent x rays
Iodide 60 • re-absorption of K-fluorescent x rays

100 • re-absorption of K-fluorescent x rays and
deposition of photoelectron kinetic energy

Table 3 Summary of the main physical effects limiting the interaction MTF at selected x-ray energies in
amorphous selenium (Fig. 3) and cesium iodide (Fig. 4).

Below the K-edges of a-Se (12.66 keV) and CsI (35.99 keV), the main cause for the drop in the MTF
is associated with: (i) the re-absorption of coherent scatter x rays within the spatial frequency range of 0 to
20 cycles/mm, and (ii) the re-absorption of L-fluorescent x rays above 20 cycles/mm. Immediately above
the K-edges of a-Se and CsI, the low-frequency (0 - 5 cycles/mm) drop in the MTF is associated with the
re-absorption of K-fluorescent x rays. As x-ray energy increases above the K-edge, the magnitude of the
low-frequency drop is reduced. The reason for the reduction is attributed to the photoelectron progressively
gaining and depositing more energy close to the primary interaction site relative to the amount of energy
re-absorbed by characteristic radiation elsewhere. At an x-ray energy of 100 keV, the low-frequency drop
in the MTF reaches a minimum, but a dramatic fall-off in the MTF occurs at high spatial frequency (10 to
40 cycles/mm). The latter high-frequency fall-off is attributed to: (i) the re-absorption of Compton scatter
x rays (Compton scatter represents 20% of the x-ray interactions at 100 keV) and deposition of
photoelectron kinetic energy (-50 gim range for 87 keV electrons) in a-Se, and (ii) the deposition of
photoelectron kinetic energy (~35 ltm range for 65 keV electrons) in CsI.

In addition, an increase in detector thickness for both detector materials leads to only a modest drop in
the MTF at any given x-ray energy due to a higher probability of re-absorbing secondary radiation that has
spread from the primary x-ray interaction site.

4.2 Spatial resolution versus x-ray energy

To clearly quantify the fundamental limitations of the x-ray interactions on spatial resolution, we
combine the spatial frequency-dependence of the modulation transfer function with the energy-dependence
of the x-ray interactions. As seen in Figs. 5 and 6, fundamental curves based on the 50% MTF frequency,
f5o, and equivalent passband, Ne, have been plotted for both amorphous selenium and cesium iodide as a
function of incident x-ray energy. Each figure has data for a thickness of x-ray converter material
representative of the imaging task (i.e. mammography or radiography).

Each detector material in Figs. 5 and 6 exhibits a unique spatial-frequency versus x-ray energy profile.
The peaks and valleys in each profile indicate the magnitude of effect that a single or combination of x-ray
interactions have on spatial resolution. In these profiles, a low ordinate value reflects a poor spatial
resolution, while the opposite is true for a high ordinate value. Since the trend in the mammography
profiles (Fig. 5) resemble those in the radiography profiles (Fig. 6), then for brevity, we only discuss the
latter over the larger x-ray energy range.

In amorphous selenium, thefso and N, profiles: (i) drop 25% and 45% respectively at the K-edge, (ii)
steadily recover after the K-edge, peaking at an x-ray energy of 35 keV, and (iii) finally drop to 70% and
60% respectively of the post K-edge peak values at 100 keV. While, in cesium iodide, the fso and N,.
profiles: (i) drop 85% and 75% respectively at the K-edge, (ii) steadily recover after the K-edge, peaking at
an x-ray energy of 60 keV, and (iii) finally drop to 40% and 33% respectively of the post K-edge peak
values at 100 keV. The x-ray interactions responsible for the shape of these profiles has already been
discussed in the last section (Sec. 4.2).
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4.3 Pre-sampling MTFs - comparison with experiment data

Figs. 7 and 8 compare the interaction and pre-sampling MTFs (MTFint and MTFpre respectively) from
Monte Carlo (MC) simulations to those (MTFre ) from experimental measurements found in the literature,
for both amorphous selenium and cesium iodide detectors used in mammography and radiography. Also
shown is the sinc aperture function, which accounts for the effect of integrating quanta over a square,
finite-size detector element.

In the mammography case (Fig. 7), the MC MTFit for cesium iodide is 18% higher than the MC
MTFit for amorphous selenium at 10 cycles/mm. The effect of K-fluorescent x ray re-absorption, which is
present in a-Se and absent in CsI in the mammography energy range, accounts for the better interaction
MTF in Csl. The MC and experimental pre-sampling MTFs for a-Se differ.by approximately 5 to 10
percent over the spatial frequency range from 0 to 10 cycles/mm. While for CsI, the experimental MTFpre is
10 to 40 percent lower than the MC MTFp,, from I to 9 cycles/mm. The disagreement in the experimental
pre-sampling MTFs for a-Se and CsI can be generally related to the charge trapping in the blocking layer of
the photoconductor, and the optical light scattering within the phosphor respectively.

In the radiography case (Fig. 8), the MC MTFint for cesium iodide is now 25% lower than the MC
MTF for amorphous selenium at 5 cycles/mm. The better interaction MTF in a-Se is due to the location of
K-fluorescent x ray re-absorption being more distant in CsI because of the greater energy of these x rays in
CsI than a-Se. The MC MTFpre for a-Se coincides very well with the experimental result (i.e. limited by the
detector element size), while for CsI, the experimental MTFpre is 20% lower than the MC MTFpre at 2.5
cycles/mm. Again, the discrepancy between the experimental and MC pre-sampling MTFs for CsI is due to
optical light dispersion. More importantly, at low spatial frequency between 0 to 2 cycles/mm, the
interaction MTF falls off more rapidly than the sinc function, which suggests that any reduction in detector
element size will not affect the contrast transfer of large-scale objects, for CsI detectors operating near the
K-edge.

5. CONCLUSIONS

We have used Monte Carlo simulations to determine the fundamental spatial distribution of absorbed
energy within two common digital detector materials, amorphous selenium and cesium iodide, in order to
quantify the fundamental spatial resolution limits in each detector. Each detector material possesses a
unique spatial-frequency versus x-ray energy profile that provides insight into which x-ray interaction(s)
limit spatial resolution within a given x-ray energy range. Within the mammography and radiography
energy range, existing amorphous selenium and cesium iodide detectors operate far from fundamental
spatial resolution limits. Ignoring charge trapping effects in a-Se and optical light spreading in CsI, any
further reduction in detector element size will potentially improve spatial resolution in these x-ray
converter materials.
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ABSTRACT

Cascaded-systems analyses have been used successfully by many investigators to describe signal and
noise transfer in quantum-based x-ray detectors in medical imaging. However, the Fourier-based linear-
systems approach is only valid when assumptions of linearity and shift invariance are satisfied. Digital
detectors, in which a bounded image signal is spatially integrated in discrete detector elements, are
not shift invariant in their response. In addition, many detectors make use of fiber optics or structured
phosphors such as CsI to pass light to a photodetector both of which have a shift-variant response.
These issues raise serious concerns regarding the validity of Fourier-based approaches for describing
the signal and noise performance of these detectors.

We have used a Monte Carlo approach to compare the image Wiener noise power spectrum (NPS)
with that predicted using a Fourier-based approach when these assumptions fail. It is shown that
excellent agreement is obtained between Monte Carlo results and those obtained using a Fourier-based
wide-sense cyclostationary analysis, including the description of noise aliasing. A simple model of a
digital detector coupled to a fiber optic bundle is described using a novel cascaded cyclostationary
approach in which image quanta are integrated over fiber elements and then randomly re-distributed
at the fiber output. While the image signal sometimes contains significant non-stationary beating
artifacts, the Monte Carlo results generally show good agreement with Fourier models of the NPS
when noise measurements are made over a sufficiently large region of interest.

Key words: flat panel detectors, cascaded models, noise power spectrum, detective quantum efficiency

1. INTRODUCTION

Cascaded models are used widely to describe both signal and noise properties of quantum-based medical
imaging systems.3 These Fourier-based methods 4' 12,13 can be used to describe noise properties in terms
of transfer of tile Wiener Noise Power Spectrum (NPS) from input to output, and signal properties
in terms of system gain and the modulation transfer function (MTF).5, 7-10 There are two important
assumptions that must be satisfied for any Fourier-based method: the imaging system must have a (i)
linear and (ii) shift-invariant response. Linearity is generally not a great problem, as most imaging
systems either produce a linear signal (that is the average output digital values scale with the average
number of incident x-ray quanta per unit area) over a useful range or the output signal is sufficiently
reproducible that it can be linearized. Shift invariance is more of a problem with digital imaging

Further author information: icunningLinaging.robarts.ca; 519-685-8500 X34130
Robarts Research Inst., 100 Perth Drive, PO Box 5015, London, Ontario, Canada, N6A 5K8



systems. For example, the size of detector elements (sometimes called "del"s) in a detector array may

be sufficiently large to introduce a "pixelated" appearance in the images. In addition, image detectors

have finite size and hence all images are spatially bounded, another form of shift variance. In spite of

these limitations, Fourier-based methods have enjoyed much success and popularity in describing the

performance of many digital imaging systems.

Fourier-based descriptions of image noise also require assumptions of wide-sense stationarity (WSS).11
This requires that the incident x-ray beam be approximately uniform over the entire image area and is

sometimes called the 'low-contrast" assumption. This means that Fourier-based methods only describe
image noise in images having only low-contrast structures. While this may appear to be a significant

limitation, image noise is generally a limiting factor only for low-contrast detection tasks, and there is
an implicit assumption that a description of low-contrast performance is a representative measure of

system performance.

Digital detectors act to spatially integrate the image quanta that interact in each detector element,

resulting in a spatial "binning" and sampling of image quanta. This has the effect of introducing a
"pixelated" appearance to image noise, and as such is no longer WSS. However, binned and sampled

WSS noise is wide-sense cyclostationary (WSCS), 11 since the mean and correlation function are in-

variant to shifts of multiples of the detector-element spacing. Fourier methods can also be applied to
WSCS noise processes, giving rise to what is popularly referred to as noise aliasing.

Figure 1 illustrates a hypothetical detector design with an additional wrinkle - a scintillating phos-
phor coupled to a digital detector array by a fiber-optic bundle. This system consists of two cascaded

sampling processes, what we call a "doubly-sampled" design. The first sampling process is a conse-
quence of the fibre-optic bundle while the second is due to the digital detector array. As described in
the next section, this results in a cascade of two binning and sampling process.

As a result of binning and sampling by the fiber optic bundle, noise associated with the distribution
of light quanta incident on the digital detector array in this system is WSCS rather than WSS. It is
therefore expected that the mismatch between size and alignment of the fibers with the detector

elements will give rise to interference and beating artifacts. In many cases, the width of optical fibers

Interacting x ray

_____Phosphor

- ( Fiber optic bundle

Digital Detector

ad

Figure 1. Schematic of a simple "double-sampled" digital detector consisting of a phosphor, fiber optic bundle
(uniformly spaced fibers having width af and pitch xf) and a digital detector array (elements having width ad
and pitch Xd). This "doubly sampled" situation occurs as the result of the cascade of these two binning and
sampling processes.



is small compared to that of the detector elements and the effect of optical binning in the fibers

can be ignored. However, with an ongoing demand for increased spatial resolution detectors (e.g. for

mammography and small-animal imaging), we are reaching the point at which the fiber and detector-

element sizes may be comparable. In addition, this "doubly sampled" problem exists in many other
detector designs such as structured phosphors etc.

There is no reason to believe that Fourier-based theories will be directly applicable to doubly-

sampled systems - their images will contain non-stationary noise and noise-related artifacts that may

be difficult to predict and quantify. The purpose of this paper is to examine the successes and failings

of Fourier-based methods to avoid misplaced confidence and/or naive application of these tools.

2. METHODS

The system illustrated in Fig. 1 is a simple doubly-sampled cascaded system and is used for the purposes

of assessing the Fourier approach. A cascaded model of signal and noise transfer is developed and used

to determine theoretical expressions of the modulation transfer function (MTF), Wiener noise-power
spectrum (NPS), noise-equivalent number of quanta (NEQ) and detective quantum efficiency (DQE). In

addition, a Monte Carlo model of the same system is developed and used to make numerical estimates
of the MTF, NPS, NEQ and DQE. The theoretical and Monte Carlo results are compared and used

as the basis of validation of the theoretical results. It is not intended that this model describe any

particular imaging system. Rather, it is intended to use this model as a hypothetical doubly-sampled
system and to determine how the Fourier-based metrics fail when applied to such a system.

2.1. Fourier-Based Cascaded Model

Figures 2 - 4 illustrate the cascade of processes required to represent this simple system. The physical

meaning of each process (and associated units) is described in the first column. The second column
shows a graphical illustration and mathematical expression of each process. These are generally random
processes and the third column gives the associated NPS where applicable. At each step, the overhead

tilde (-) indicates a random variable and the dagger (t) superscript indicates a detector digital value
represented as a scaled 3 function. One-dimensional geometry is used for simplicity, but the results are

directly applicable to the two-dimensional case as well.

The input to the cascaded model is the random variable do(x) (Fig. 2a), a uniform, Poisson-

distributed, random point process, with each Dirac 3 function describing the location of an interacting
x-ray quantum:

d 0(W (X - (1)i

where N is a random variable describing the total number of quanta and ci is a random variable
describing the spatial position of the ith quantum. Each 3 function in this example has units mm- 1 .

They are generalized functions and distribution theory1 1 must be used to describe these distributions.
The Wiener NPS of this distribution is given by W0(u) = q0.2

2.1.1. Conversion to Light in Phosphor

Each interacting x ray produces fi secondary optical quanta in the phosphor, where ffi is a random

variable with mean fn and variance o2 . The result is a random distribution of optical quanta q1 (x) as

illustrated in Fig. 2c. Note that this distribution is "marked" - that is, the secondary quanta are all
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Figure 2. Schematic illustration of the conversion from x rays that interact in a phosphor to the presampling
function describing the number of quanta collected by each fiber in a fiber-optic bundle for the system in Fig. 1
(continued in Fig. 3).
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Figure 3. Schematic illustration of converting the number of optical quanta in each fiber to the presamnpling
function describing detector-element output values (continued in Fig. 4).
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Figure 4. Schematic illustration of the conversion from the presampling detector function to aliased digital
values.

at the exact location of the interacting x ray and therefore overlap. This is why the impulse functions
have variable height.

Each optical quantum is relocated to a new location according to the probability density function

(PDF) pp(X) before leaving the phosphor (42(x) in Fig. 2e). This is represented as a scatter operation.

2.1.2. Optical Fiber Coupling

The fiber optic bundle passes light from the phosphor to the detector. It is assumed all fibers have
the same width af and uniform spacing xf. In this model, all light quanta incident on the end of

each fiber are accepted and passed through the fiber to the exit surface. Due to multiple scatters and
reflections within the fiber, each quantum exits from the end of the fiber at a random location that
does not correlate with the entrance location. Thus, we represent the fiber optic as a two-step process:

i) integration of the number of quanta entering each fiber as a convolution with the rectangle II(x/af)

to determine the total number of quanta in each fiber (binning and sampling, Figs. 2f and 3h); and
ii) scatter with the same rectangular PDF to randomly relocate each optical quantum over the exit

surface (Fig. 3j). The result is an "ordered" (non-overlapping) distribution of optical quanta leaving
the fiber optic bundle 45(x) (Fig. 3k).

2.1.3. Detection of Light Quanta in Detector

Detection of light in the digital detector is a binning and sampling process, represented as a convolution
with gl-(-) (Fig. 31) followed by multiplication by X 6(x - mxd) (Fig. 4n) where g is a scaling factor
relating the number of detected light quanta (per element) to the digital ADC value. The detector

output is given by dQ(x) = Zmdm6(x - mxd) for 0 < m < N where N is the number of detector
elements.



2.2. Theoretical MTF, NPS, NEQ and DQE

A theoretical expression for the "presampling" MTF of this doubly-sampled system is obtained by

cascading the frequency-dependent terms from Figs. 2 to 4, resulting in

MTF(u) = Tp(u)sinc2 (7rafu)sinc(7radu) (2)

where Tp(u) is the magnitude of the Fourier transform of pp(x). However, there are serious problems
with this model as will be shown in the results section.

A similar approach is used to describe noise in the detector output. The presampling noise at stage

3 is
W3(u) = -0a2(rh2 _ 1 + 0,2m)sinc 2 (7raf u) + qoa 2insinc

2 (7rafu) (3)

and the aliased NPS at stage 4 is

W4(u) = w3(u) + W3(U ± n (4)

Xf

Cascading this result to the detector output gives the presampling NPS as

W6 (u) = [W4 (u) - loa}fi]g 2 a2sinc2 (7radu) + qlog 2 a.a2dimsinc2 (7radu) (5)

and the aliased NPS as
W7 (U) = w 6(u) + W6(u + ,n). (6)

Xd

The "theoretical" DQE is given by

-2 z2 2-n2

DQE(u) =o- gafa2m TWF(u) (7)

where this representation includes MTF aliasing which is not generally accepted practice. The NEQ is

given by NEQ(u) = DQE(u)/q0.

2.3. Monte Carlo Calclulation

The MTF of this system was calculated using Monte Carlo data by generating an impulse beam of x
rays incident on the system. A one-dimensional geometry was used so that the resulting image profile

gives the line-spread function (LSF) directly and the MTF is given as the magnitude of the Fourier
transform of the LSF. The Monte Carlo calculation used a matrix of small elements of width a such

that the fibers had a width af = 11a and the detector elements had a width ad = 15a in the results
presented here.

It should be noted that aliasing in the Monte Carlo MTF is unavoidable in this calculation. Thus,
artifacts from both the fiber and detector sampling stages are expected in the calculated MTF. The
calculated MTF also depends strongly on the relative alignment of the impulse x-ray beam with respect

to the two sampling grids. 6 These artifacts could be avoided, and the true presampling MTF calculated,
if the Monte Carlo calculation were modified to implement a "slanted-edge" method. 14

The NPS was calculated from a line profile corresponding to a uniform distribution of uncorrelated
incident x rays.
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Figure 5. Comparison of the MTF, NPS and DQE from the theoretical (solid lines) and Monte Carlo (dotted
lines) for each stage in this doubly-cascaded system. The Monte Carlo MTF (and DQE) agree with the theoretical
results up to stage 3, but aliasing causes a divergence between these results. The NPS shows excellent agreement
for all stages. The DQE shows agreement similar to that of the MTF results.



3. RESULTS

Both the theoretical (solid lines) and Monte Carlo (dotted lines) results are shown in Fig. 5 for all

seven stages. There is excellent agreement for the MTF, NPS and DQE up to and including stage

3, corresponding to the presampling function describing the number of optical quanta in each fiber

(Fig. 2g). While excellent agreement is expected, this result is both comforting and provides validation

of both the Monte Carlo and theoretical results.

As a result of aliasing in stage 4, however, the MTF measured from Monte Carlo data does not agree

with the theoretical MTF. There are several reasons for this. For example, the theoretical calculation
gives the presampling MTF while the MTF measured from the Monte Carlo data includes aliasing, and

so agreement is not expected. In addition, the Monte Carlo results depend on the relative alignment
of the impulse beam with the (fiber) sampling grid.6 Depending on this alignment, the Monte Carlo
MTF can vary dramatically.

While MTF agreement is qualified, there is excellent agreement in the theoretical and Monte Carlo
NPS. This is because noise in stage 4 is WSCS and hence satisfies requirements for use of Fourier-

based methods. The NPS result is always aliased and questions regarding the use of a presampling
NPS are not raised. In addition, there is no preferred alignment of the input signal. Image quanta are
distributed over the entire input area, and hence measured noise is an average over all possible relative

alignments with respect to the sampling grid. This result gives direct validation that noise aliasing
correctly describes the appearance of noise in digital images.

In the remaining stages 5 to 7, there remains limited agreement between the theoretical and Monte

Carlo MTF and DQE. However, there is excellent agreement for the NPS at each stage. This result
is somewhat surprising, as there is no good reason to expect that these Fourier-based methods should

apply at all after the two sampling processes. However, this good NPS agreement must be qualified
with some serious caveats. For example, the Monte Carlo NPS is the average spectral density over
the entire image, and may not accurately describe local image noise. This will often be a problem, as

relative alignment of the two sampling grids will give rise to complex interference and beating artifacts
in the images. These effects may have a significant impact on the appearance of image noise, making
it non-WSS and non-WSCS.

4. CONCLUSIONS

The conclusions from this study are summarized as follows:

1. The NPS measured from a Monte Carlo simulation of doubly-sampled imaging processes shows

excellent agreement with the NPS calculated with a Fourier-based cascaded-systems approach.
This is a very surprising result as image noise in these systems is in general neither WSS nor

WSCS. However, it must be remembered that the NPS is the power spectrum averaged over the
entire image, and as such does not reflect local interference and beating artifacts that are likely
present as a consequence of the double-sampling processes.

2. The MTF calculated from Monte Carlo data shows the expected aliasing artifacts. They could

be avoided, and the presampling MTF calculated, by implementing a slanted-edge calculation in
the Monte Carlo results.

3. Doubly-sampled systems can be well approximated as (more conventional) singly-sampled systems
if one of the binning apertures is much smaller than the other. In this case, only the larger aperture
needs to be considered when developing a theoretical model of the NPS.



4. While the Fourier-based theoretical model appears to describe global noise correctly, failure to
describe local noise due to interference and beating artifacts means that the calculated DQE
cannot be used as an indicator of the ideal observer for quantum-noise limited detection tasks -

the primary purpose of the DQE.1
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Validation of Complex Cascaded Models of Medical Imaging
Systems by Monte Carlo
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ABSTRACT

Cascaded models have been used by a number of investigators to derive analytic expressions for the Wiener
noise power spectrum (NPS) and detective quantum efficiency (DQE) based on design parameters to evaluate
the performance of medical x-ray imaging systems. These analytic models are required to establish operating
benchmarks and compare the performance of real detectors. Although application of the cascaded approach has
had several successes, its contribution is often limited when applied to complex models. This is due to the fact
that while final algebraic expressions can be relatively simple, the cascaded approach involves the manipulation of
many hundreds of terms. To overcome this limitation a computational engine has been developed using Matlab's
Simulink and symbolic math capabilities. Based on a recursive programming approach, this engine generates
analytic expressions of NPS and DQE for cascaded models of arbitrary complexity.

In order to validate the resulting expressions, a Monte Carlo (MC) simulation program has been developed
that performs an analysis based on C-code generated by the computational engine for each model. The Monte
Carlo code generates an incident quantum image as a Poisson distribution of quanta. This distribution is passed
through appropriate serial and parallel cascades of modules representing elementary processes and is used to
calculate the NPS for comparison with the analytic NPS. Results show excellent agreement between Monte
Carlo and theoretical expressions. We are at the stage where complex cascaded modelling is becoming practical
tool in the design of new detector systems.

Keywords: linear-systems theory, cascaded models, modulation transfer function, noise power spectrum, de-
tective quantum efficiency, Monte Carlo analysis

1. INTRODUCTION

Medical x-ray imaging systems must be designed to ensure that maximum image quality is obtained with min-
imum radiation dose to the patient. The view that an imaging system must be designed such that it faithfully
transfers input the image signal to the output image viewed by a physician suggests the use of communication
system theory, and in particular Fourier-based linear systems approach.1 Linear system theory was initially
applied in imaging science by Rossmann and co-workers. 2',3 General works have subsequently been published by
Dainty and Shaw,4 Gaskill,5 Papoulis,6 Doi, Rossmann, and Haus, 7 Metz and Doi,' and many others. Possi-
bly the most extensive use of linear-system theory in medical imaging field is by Barrett and Swindell 9 who used
this approach to describe fundamental principles and characteristics of many imaging systems in radiography,
computed tomography (CT), nuclear medicine, ultrasound and other areas.

One way to apply linear system theory to evaluate performance of x-ray imaging system is the approach in
which a system is modelled as serial or parallel cascades of elementary processes. Transfer of signal and noise
throughout the system is predicted from an understanding of transfer properties of each elementary process.
Cascaded modelling provides analytic expressions of image quality and system performance metrics. These
metrics include: (1) modulation transfer function (MTF), describing spatial resolution; (2) noise power spectrum

Further author information:
MS: E-mail: msattardirmaging.robarts.ca, Telephone: 519-685-8300 x34030
IAC: E-mail: icunningdimaging.robarts.ca, Telephone: 519-685-8300 x34130, Address: Imaging Research Laboratories,
Robarts Research Institute, P.O.Box 5015, 100 Perth Drive, London, ON, N6A 5K8, Canada
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Figure 1. Elementary processes built as a library in Simulink package of Matlab

(NPS), describing image noise; and (3) detective quantum efficiency (DQE), describing the ability of the imaging
system to make efficient use of incident quanta.

When cascading signal and noise expressions from one elementary process to another, the number of terms
grows exponentially. In particular, cascaded models with parallel branches require cross term NPS that contribute
to the the final NPS expression. For a relatively simple realistic model an NPS of several hundred terms is not
unexpected. This creates a serious limitation to the practical use of complex cascaded models. On the other hand,
analytic expressions for most realistic models can be highly simplified. In order to overcome this limitation, we
have developed a computational engine that analytically calculates and simplifies MTF, NPS, and DQE using a
graphical user interface. Recursive programming is applied in the algorithm to accommodate arbitrarily complex
models. In order to verify the generated expressions, we need a mechanism to validate the algorithm. Simple
models can be validated directly with manual calculations. However this can be impractical for complex models.
We used Monte Carlo (MC) analysis and compared the results with the model's analytic results. The MC analysis
is also used in three test models to: (1) validate analytic cross term NPS in order to confirm earlier works,11 (2)
show that cascaded modelling is valid for non-Poisson branch, and therefore for series of parallel cascades, and
(3) show it is also valid for nested parallel models. These results extend the application of cascaded models for
any arbitrary model with serial or parallel combinations.

2. METHODS

2.1. COMPUTATIONAL ENGINE FOR CASCADED MODELLING

As illustrated in Fig. 1, a library of elementary processes are defined in the Simulink package of Matlab that
can be connected in serial and parallel cascades to create complex detector models in a gTaphical user interface
environment. These processes include generation of incident quantum distribution, quantum gain, quantum
scatter, quantum selection, charge integration, linear filter, and sampling to model serial cascades. Parallel
cascades are created using what we call quantum branch, Bernoulli branch, cascade fork, and quantum summation
processes. Recursive programming is used to calculate signal and noise transfer through models of arbitrary

complexity. Based on the model topology and the parameters of the elementary processes, the engine generates
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Figure 2. A photoelectric interaction model built with computational engine

and simplifies analytic expressions of MTF, NPS, and DQE for the entire system as well as intermediate steps. At
each step, symbolic mathematics is used to simplify the analytic expressions. In this method, models of arbitrary
complexity can be analyzed. Fig. 2 shows a simple photoelectric model that was built using the computational

engine. This is the parallel model used in earlier study 12 to describe reabsorption of characteristic x-rays in a
flat-panel detector.

2.2. Monte Carlo validation of complex cascaded models

While the computational engine calculates analytic expressions of an arbitrary model, it also generates a C-code

source file for the specific topology and parameter values of the cascaded model. When this C-code is compiled
with a library of MC routines implementing each of the elementary processes, data-sets of sample functions are
generated and passed throughout the model. Instead of 2-D, MC routines generate only 1-D data-sets which is

enough for validation purpose.

When the sample function starts off at source with a uniform random distribution of a specified number of
incident quanta, the NPS of a sample function at any stage can be found by dividing and binning the sample
function into many sub-images and using the equation: 13

NPS(u) = -_xxE{IDFT{Ad }12} (1)
Nx

where xO is the bin spacing, N, is the number of bins for each sub-image, and E{IDFT{Adx}I2 } calculates an
ensemble average of square of the discrete Fourier transform of the zero-mean data set.

For the MC calculation of MTF, sample function starts off at source with a number of incident quanta all at
the center of binned image. By passing this image throughout the cascaded model, impulse response functions
after any elementary process are found. The MTF is the Fourier transform of the impulse response function.

Once the NPS and MTF for the cascaded model are calculated, the DQE is determined. In this paper we only
show the results of NPS validations of cascaded models.

We used ranO routine in Ref. 10 to generate random numbers. The authors claim that the number of random
numbers that can be generated without repetition is given by the variable RAND-MAX. For our compiler this
number is 2,147,483,647, much greater than the number used in this work.

2.3. Validation of our Monte Carlo code

Figure 3 shows a simple model consisting of an input Poisson distribution of quanta, quantum gain, and quantum

scatter. This model represents the conversion of input quanta to clusters of secondary quanta. Each point in
the input and output images represents one quantum. The image on the left is a sample function of the input
that describes a sparse distribution of x-ray quanta. The image on the right is a sample function of the output

that describes the distribution of light quanta generated by the x-rays after passing through cascaded gain and
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Figure 3. A simple cascaded model consists of Poisson source, gain, and scatter processes

scatter processes. As mentioned before, unlike 2-D sample functions shown in Fig. 3, we will only generate 1-D
sample functions in our MC routines.

For this model, since analytic expressions of signal and noise are known and can be readily derived manually,

there is no need to validate them by MC analysis. However, we will use the analytic NPS for this model to
validate our MC approach. The analytic NPS for this model is found to be13 :

NPS(u) = 9jin(p2 + J- 9)T(u)I2 + 97in (2)

where qt,, is the mean number of input quanta per unit area at the source, each input quanta is converted to ý
quanta by the gain process and ý is a random variable characterized by mean gain g and corresponding variance
U2. After the gain process, each quantum is randomly relocated to a new position by the scatter process with a

probability described by the transfer function T(u).

By applying the MC method described above, the NPS of the model is calculated and shown in Fig. 4 for
1,500,000 histories. The results show excellent agreement between MC and analytic NPS of Eq. (2). This
indicates that we can get the same analytic results using MC simulation. Figure 4 also shows how MC NPS is
increased and still kept the agreement with analytic when mean gain value .0 is increased from 10 to 12. Also
note that MC result is always slightly below analytic NPS. This small discrepancy could result from detrending
artifact and we will ignore it in this paper and expect to get the same artifact in all our MC results.

3. RESULTS

3.1. Testl: Validation of analytic cross-term NPS

When two image forming processes contribute to the output signal, the final image is the sum of each. However,

the output NPS is not simply the sum of each NPS and a cross-term NPS must be considered due to statistical
correlation between two image forming processes.1" Fig. 5 shows an example of a parallel cascaded model. The
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Figure 5. Testl: Parallel-cascades model with uncorrelated input quanta to branch.

upper arm has only one gain process whereas the lower arm consists of a selection, a gain and a scatter process.
The output NPS at point C is:

NPSc (u) = NPSA (u) + NPSB (u) + 2NPSAB (U) (3)

where NPSAB (U) is the cross-spectral density between points A and B. This cross term was derived by Yao and
Cunningham.' For the type of branch points used in this article, the cross term is given by

NPSAB(U) = NPS,, (u)PA(u)PB(u) (4)

where NPSin(u) is the NPS at the branch input, and PA(u) and PB(u) are the product of the characteristic

transfer functions for all process along the arms A and B separated by the branch.

Application of Eq. 4 gives the cross term for this particular model as:

NPSAB(u) = qi,.qga.bT(u) (5)

where qin is the mean number of input quanta per unit area at the source, g is the mean selection gain, T(u) is

the transfer function of scatter process, and ja and Nm are mean gain values of gain processes in upper and lower
arms respectively. Results of MC and analytic NPS at points A, B, C as well as cross term NPS are shown in
6. Note that a flat NPS at point A is a result of no correlation in the sample image at this point. These results
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validate the analytic cross term NPS described in Ref. 11 by MC simulation. Cross term NPS readily can be
extended to multiple parallel where there are more than two image forming process arms. In this case cross-term
NPS between any possible two arms should be considered. Equation (94) of Ref. 11 also indicates that the cross
term NPS depends on pruduct of mean gains along the path of each arm. For example, if we have gain and
selection, two very different statistical processes, only product of mean gains along the arms is important in cross
term NPS as indicated by PLOaN term in equation (5). We confirm this issue by doubling mean gains of both
gain processes in upper and lower arm and halving mean gain of selection process in lower arm. Fig. 7 shows
MC and analytic cross term NPS before (NPSlAB) and after (NPS2AB) doubling the product of gains. This
result is the first direct validation of the cross-correlation term.
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3.2. Test2: Validation of non-Poisson branch in parallel cascading

Branches in parallel modelling are introduced" for Poisson input branch signal. We will show that the same
signal and noise transfer propagations can be applied to non-Poisson input signal and validate this argument with
MC analysis. Figure 8 shows an example of non-Poisson input branch. This is the same previous parallel cascade

model with added gain and scatter processes to make the input branch signal non-Poisson. The distribution of
quanta at point A can be characterized by an MTF equal to normalized transfer function of the first scatter
process and an NPS given by Eq. (2). In order to evaluate the output signal, the analytic approach is to pass

these MTF and NPS to the parallel cascade part the same way as we would do for Poisson branch input. The

final analytic NPS is calculated and compared to the MC NPS in Fig. 9. The close agreement between analytic

and MC calculations confirms that signal and noise propagation is valid for non-Poisson case. Figure 9 also

shows the NPS of parallel cascades with Poisson input branch which is the same as NPSC shown in Fig. 6. As

expected, output noise is much higher in the Poisson branch input.

3.3. Test3: Nested parallels

The NPS cross term in Eq. (4) depends on the NPS at the branch input as well as the product of all transfer
functions (including gains) along two branch arms. When cascading arbitrarily complex models, nested parallel

cases may happen. Figure 10(a) shows an example of this nested parallel configuration where the resulting NPS
is given by

NPSot(7u) = NPSc(u) + NPSD(U) + 2NPSCD(U). (6)
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The cross term NPSCD(U) is not immediately obvious due to the complicated set of statistical correlations
between points C and D.

The solution is obtained by noting that while Eq. (4) describes correlations between any two points, corre-
lations between C and D are the result of several connections. Equation (4) must be applied to each possible
connection and summed to give the overall cross term.

In Fig. 10(a) there are two such connections, stemming from the two branch points Forkl and Fork2. From
Fork2, the two branch arms are simply connected giving the cross term NPS (u) where

NPSi(u) = NPSA(u).-g-b (7)

where j and gb are the mean gains of the selection and Gain2 processes respectively and we have used the fact
the the input NPS at Fork2 is equal to NPSA(U), the NPS at point A. From Forkl, the two branch arms give
rise to the cross term NPSij(u) where

NPSii(u) = qinggagbT(•t) (8)

where qjn is the NPS associated with the input distribution, ga is the mean gain of the process Gain1 and T(u)

is the transfer function of the scatter process. The cross term NPSCD(U) is given by

NPSCD(U) = NPS (u) + NPS(i (u). (9)

It is useful to note that the model in Fig. 10(a) is equivalent to that in 10(b). This observation is useful as it
provides an alternative (simpler) form for this model. By comparing the final NPS of the two models it can be
shown that

NPScD(u) = NPSCE(U) + NPSCF(U). (10)

Using this technique we calculated analytic NPS of the nested model in Fig. 10(a) and compared it to the MC
NPS performed on the same model. The result is shown in Fig. 11. Despite slightly more fluctuations in MC NPS

compared to other MC results due to fewer number of histories, it validates our analytic approach to calculate
cross term NPS for nested parallel models.
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Figure 12. MC and analytic NPS of simplified photoelectric model

3.4. Simplified photoelectric model

The simplified Photoelectric model shown in Fig 2 is analyzed with our MC method to validate analytic MTF,
NPS, and DQE calculated by the computational engine. For the NPS, MC analysis started with 2.7 million
x-ray photon histories at the source. Comparison between MC and analytic NPS shown in Fig. 12 demonstrates
excellent agreement. The NPS of this model contains cross terms in the NPS because of statistical correlations
between the two parallel arms of the model. The agreement between MC and analytic also validates cross
term NPS which was addressed directly in section 3.1. Results of MTF and DQE for this model show similar
agreement and are not shown here.



4. CONCLUSIONS

The MTF, NPS, and DQE are important indicators of image quality and performance of medical imaging systems.

Recent developments in understanding noise transfer has resulted in application of generalized transfer-theory
approach that can be used to evaluate MTF, NPS, and DQE of the medical imaging systems.

To remove the serious problem of manipulating long analytic expressions, a validated computational engine
has been developed to describe signal and noise performance of complex detector designs. Analytic expressions
of MTF, NPS, and DQE are generated, making the cascaded method powerful and practical approach. Recursive
algorithm implemented in the computational engine accommodates arbitrary complexity.

Analytic results have been validated by Monte Carlo. This is the first such validation of cross terms and is
performed for three test models: (1) parallel cascade model with uncorrelated input quanta to the branch point,
(2) parallel cascades model with correlated input quanta to the branch point, and (3) nested parallel models.
We showed that analytic approach to apply signal and noise transfer theory in these models is valid. The results
extend the the application of cascaded modelling to any arbitrary model with serial or parallel combination.
Making sure that arbitrarily complex cascaded models are valid may help scientists and engineers to apply
transfer-theory in designing new imaging systems with better image quality.
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ABSTRACT

An often neglected assumption related to detector performance metrics such as the modulation transfer function

(MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) is that they only apply to a
small region around the centre of an x-ray image. In the periphery of an image, image formation is from
obliquely incident x rays. These off-axis x rays will introduce an additional degrading effect on the above
detector performance metrics. In our study, we use Monte Carlo simulations to quantify the effects of off-axis
radiation on the MTF, NPS, and DQE on common diagnostic x-ray detectors. In our simulations, we vary the

incident angle of x rays between 0' and 12', which is a typical range of divergence in diagnostic x-ray imaging.
In the case of amorphous selenium, our results show that off-axis incident x rays degrade the MTF above 5

cycles/mm with increasing severity at higher incident angles and x-ray energy, and more importantly has very
little effect on the NPS. Hence, the impact is more severe on the DQE due to the MTF squared dependency.
For an incident x-ray angle of 12' (-13 cm from central axis or chest wall in mammography), the DQE falls to
50% of its initial value at 10 and 7 cycles/mm for x-ray energies of 20 and 40 keV, respectively. This loss of
signal-to-noise ratio may be most significant near the skin line in mammography studies.

Keywords: detective quantum efficiency, oblique incident x rays

1. INTRODUCTION

One important aspect in the assessment and development of x-ray imaging systems is to quantify the performance
characteristics of the x-ray detector. A wide variety of metrics can be used to gauge performance, but the
customary way to describe the system response of a detector is in the Fourier domain because of the convenience of
quantifying spatial correlations in signal and noise. The main metrics of system response include the modulation
transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). These metrics

are useful descriptors of spatial resolution, noise, and signal-to-noise ratio, respectively, and have been well
described in the literature. 1' 2 A number of assumptions often need to be made to permit the quantification of

the aforementioned metrics, especially in the case of experimental measurement. For example, one assumption
usually made pertains to the normal incidence of all x rays on the detector. In reality, x rays will diverge from
the focal spot and impinge on the detector over a range of angles. These off-axis or obliquely incident x rays
will change the manner in which the incident x-ray energy is distributed within the x-ray converter material.
Therefore, a change in energy deposition will introduce a blur that will further degrade spatial resolution, and
possibly noise, especially in the periphery of an x-ray image.

The impact of off-axis x rays on image quality will depend on the imaging geometry and the existence of

relevant anatomy in the periphery of the image. One imaging application where the effects of off-axis x rays may

be of concern is mammography. Mammography is one of the most technically demanding imaging techniques
because of the need to perceive the fine-details of micro-calcifications and thin fibres protruding from a tumor
mass in the breast. The nominal imaging geometry3 for mammography consists of a 60 cm source-to-detector
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distance with a detector field-of-view of approximately 18 cm x 24 cm. Based on these values, the x-ray angle of
incidence can vary by as much as 170 in the anterior/posterior direction of the breast. Unlike other x-ray imaging
techniques, mammography requires both high-contrast and high-spatial resolution capability, which can only be
achieved using low x-ray energies. A consequence of using low energy x rays is that the intensity or penetrating
power of the beam is significantly reduced. The latter statement explains the short source-to-detector distances
used in mammography. However, the trade-off of using a short detector distance is an increase in incident x-ray
angle for the off-axis portions of the beam. Therefore, the ability to detect fine and low-contrast structures near

the skin line of the breast will be compromised because of the effect from off-axis x rays.

Que and Rowlands 5 have derived, from first principles, an analytic expression of the point spread function
and MTF that describes the effect of obliquely incident x rays, which they term the geometric effect, on spatial
resolution. These expressions have not been validated mainly due to the difficulty, or even impossibility, of

performing a valid experiment. More importantly, no one to date has described the impact of the geometric
effect on the NPS and DQE. An alternate method to study the geometric effect is through Monte Carlo simulation,
which is a powerful tool to solve problems that may be too difficult analytically or even experimentally. The

objectives our paper are: (i) to quantify the geometric effect in terms of the MTF, NPS, and DQE using Monte
Carlo simulations of photon and electron transport in a common x-ray converter material, (ii) to describe the
penalty on the DQE from off-axis x rays, and (iii) to report on the implications of the geometric effect in
mammography.

2. THEORY

As mentioned earlier, the geometric effect has been described analytically with respect to spatial resolution. 5 We
briefly summarize the results below. To supplement the equations, a simple schematic diagram of the geometry
is provided in Fig. 1.

For an obliquely incident x ray in the x-z plane, the point spread function (PSF9 ) for the geometric effect
has the form 5

PSFg,o(x,y) = 6(y) H(L tan0 - x) H(x) exp - sin 9) (1)

where H(...) is the step function (i.e. equals 1 if the argument is positive, and 0 otherwise), p is the linear
attenuation coefficient, 0 is the angle of incidence of the x ray, L is the thickness of the x-ray converter, and 6(...)
is the Dirac delta function.

As seen in Fig. 1b, an obliquely incident x-ray can be attenuated anywhere along points A and B. For an
infinitely thick x-ray converter material, the mean lateral displacement of the interaction point for an obliquely
incident x-ray is equal to x' = 1/p x sin 0, where 1/pi is the mean free path of the x-ray. For a material with a

bounded thickness, L, the maximum lateral displacement of the interaction point is equal to Xmax = L tan 9. If
X > XnaT, then the x-ray attenuation does not have much effect on the size of the blur, and the geometric effect
is determined by the thickness of the x-ray converter layer. If Xmax > x', then the mean free path of the x-ray
is smaller than the pathlength, AB = L/ cos 0, and the geometric effect is limited by the x-ray attenuation.

The corresponding MTF for the PSF in Eqn. 1 is given by5

MTFg,0(u) {[1 -exp(-ptL/cos8)] 2 + 4 exp(-p L/cos9) sin2 (7F uL tan 0)}1/
2  (2)

[1 - exp(-p L/cos 0)] [1 + (27 u sin 0/p)
2]1/

2

The functional form of the geometric MTF can be clearly seen in the limit of / --* 0,

MTFg,o(u) = [ sin(7r u L tan 0)(
7ruL tan9 (3)
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Figure 1. Schematic diagram illustrating (a) the mammography imaging geometry and (b) close-up view of the geometric
effect for obliquely incident x rays.

3. METHODS

3.1. Monte Carlo Code and Detector Geometry

The latest version of the Electron Gamma Shower (EGSnrc) Monte Carlo code6' 7 was used to determine the
spatial distribution of absorbed energy for x rays incident on a common x-ray converter material. The user code
DOSXYZnrcs, 9 was used to simulate the coupled photon-electron transport within a rectangular slab geometry,
and to score the amount of energy deposited within the detector volume for each photon history.

The x-ray converter material chosen for our study was direct conversion amorphous selenium (a-Se). A
converter density of 4.20 g/cm3 and thickness of 300 [tm were used, which are typical in existing digital x-ray
detectors used in mammography.]° - 13

Dose deposition maps, do (x, y), were determined at various angles of x-ray incidence, 0, and at two monoen-
ergetic x-ray energies of 20 and 40 keV. These energies approximately represent the mean and maximum energies
encountered in mammography x-ray spectra. As shown schematically in Fig. 2, two different beam geometries
were used in the simulations: an infinitesimal pencil-beam of x rays for the MTF simulations, and a broad (i.e.
encompass entire detector area) parallel beam of x rays for the NPS simulations.

Table I summarizes the Monte Carlo parameters related to the x-ray beam and x-ray converter.

3.2. MTF Simulations

In order to determine the MTF, Monte Carlo simulations were performed with an infinitesimal pencil-beam of x
rays incident on the a-Se slab. In each simulation, 107 incident x-ray histories and a pixel size of 1 pm were used.
A dose deposition map, do((x, y), was scored for each x-ray angle of incidence, and represents the two-dimensional
point spread function (PSF), psfo(x, y), when normalized to unit area,

Psf0(XIY) - do (x, y) (4)f f do(x, y) dx dy

Based on psfo(x, y), the modulation transfer function, MTFo(u, v), was calculated using the 2-dimensional
Fourier transform via
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Figure 2. Monte Carlo Simulation geometry for (a) modulation transfer function and (b) noise power spectrum.

MTFo(u, v) = Y22{psf0(x, y)} = j Psf 0 (x, y) e- 27(ux+vy) dx dy (5)

which represents the spatial resolution due to the spread of absorbed energy from x-ray and electron interactions
within the converter material for a given incident x-ray angle. From Eq. 5, we extracted the 1D MTF along u,
i.e. the corresponding spatial-frequency direction in which the incident x-ray angle is varied.

3.3. NPS Simulations

In order to determine the NPS, a series of ten flat-field noise images were simulated with a uniform, parallel
x-ray beam of 8 x 10' incident x-ray histories per image over an area of 2 x 2 cm 2 (1 Ium pixel size). Boundary
effects from the Monte Carlo simulation were accounted for by removing 200 pixels at each edge of the image.
Each of the final noise images had 1800 x 1800 data points, which was subdivided into 81 images, each with 200
x 200 data points. Therefore, a total of 810 sub-images were generated. The results from the 810 sub-images
were averaged to obtain the final NPS curve.

In our study, we considered the "direct-digital" technique of NPS analysis,"4 in which the NPS is determined
from the ensemble average of the modulus-squared of the discrete Fourier transform (DFT) of the zero-mean
image signal, as given by,

NPSe(u,v) = NxYo EDFT2D{Ade(n,,%)}12  (6)

where xo, Yo represent the pixel centre-to-centre spacing in the x and y directions, Nx, Nu are the number of pixels
in the x and y directions, nx, ny index each pixel location, E{ ... } is the expectation operator, and Ado(x, y) is
the zero-mean realization of the 2D dose deposition. With the same reasoning as the MTF case, we only consider
the ID NPS of the 2D noise process in Eq. 6.

3.4. Detective Quantum Efficiency

Once the MTF and NPS were determined from the Monte Carlo simulations, they were used to calculate the
DQE via 15



Table 1. Summary of x-ray beam and detector parameters for Monte Carlo simulations of MTF and NPS.

Parameter Symbol Value

X-ray energy hv {20, 40} keV
X-ray incident angle 0 {0, 3,6, 9, 12}°

Converter material a-Se amorphous selenium
Converter density p 4.20 g/cm3

Converter thickness t 300 jm
MTF Simulations

Number of x-ray histories NHist 107

Number of x, y voxels N., Ny 512, 512
Size of x, y voxels Ax, Ay 1 jim, 1 jim
Total area of converter A 0.512 x 0.512 cm 2

NPS Simulations
Number of x-ray histories NHist 8 x 107

Number of images NImage 10
Number of x, y voxels Nx, Ny 2000, 2000
Size of x, y voxels Ax, Ay 10 pm, 10 Am
Total area of converter A 2.000 x 2.000 cm 2

MTF((u)7)
DQE 0 (u) - �NPS 0 (u)/d 2

where q is the average number of quanta (i.e. histories) used in the NPS simulations and d is the average signal
value of a noise image.

3.5. Detector Performance Oblique Degradation Ratio (ODR)

For x-ray imaging systems where the angle of incidence of the x ray may be important, we introduce the concept
of the detector performance oblique degradation ratio, ODRO(u). At a selected spatial-frequency, u, the ODRO(u)
represents the ratio of the DQE at an oblique incident x-ray angle to the DQE at normal incidence via

ODRo(u)- DQEO(u) (8)
DQEoo (u)

In simpler terms, for a given angle of incidence, Eqn. 8 quantifies the reduction of the signal-to-noise ratio
relative to the assumption of normally incident x-rays.

4. RESULTS

The spatial distribution of absorbed energy from a Monte Carlo simulation can be used to obtain the "interaction"
modulation transfer function, for the case of an infinitesimal x-ray beam, and the noise power spectrum, for the
case of a broad, parallel x-ray beam. From this interaction MTF and NPS, quantities such as the DQE can be
calculated. These quantities are summarized in the following sections.

4.1. Modulation Transfer Function

The interaction modulation transfer functions for amorphous selenium are shown in Figs. 3(a),(b) for x-ray

energies of 20 and 40 keV. In each figure, a select number of MTFs based on a range of incident x-ray angles
from 0'-12' are plotted to highlight the variations in spatial resolution due solely to the geometric effect. Above
5 cycles/mm, each MTF curve begins to disperse from one another, indicating a loss of spatial resolution with
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Figure 3. Modulation Transfer Function due to obliquely incident x rays. All the curves from (a) and (b) were generated
from Monte Carlo simulations, while those in (c) and (d) were calculated by multiplying the 00 result from (a) and
(b), respectively, by Eqn. 2 for the appropriate oblique angles. The analytic results agree very well with Monte Carlo
simulation.

increasing incident x-ray angle. The fluctuations in a few of the MTF curves in Fig. 3b demonstrate the sinc

behaviour of the geometric effect (see Eqns. 2 and 3).

The purpose of Figs. 3(c),(d) is to determine if the behaviour of the geometric effect can be described

analytically. In other words, does Eqn. 2 accurately describe the geometric effect? In these plots, the MTF

curve from the Monte Carlo simulations at normal x-ray incidence was multiplied by the expression in Eqn. 2
for each oblique angle. As can be seen, there is remarkable agreement. Although, caution must be exercised for
this observation because we have only investigated low x-ray energies and small incident x-ray angles. At higher
energies and oblique angles, the spatial distribution of absorbed energy from the incident x-ray dramatically

spreads out, which in turn complicates the energy deposition within the converter material. These extreme cases
are part of an ongoing investigation.
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Figure 4. Noise Power Spectrum due to obliquely incident x rays. Plotted is the normalized unitless NPS (i.e. denom-
inator of Eqn. 7). For purposes of clarity, each curve is a fourth-order fit to the actual NPS data. Note that obliquely
incident x rays have a negligible effect on the noise.

4.2. Noise Power Spectrum

The interaction noise power spectra for amorphous selenium are shown in Fig. 4 for x-ray energies of 20 and 40
keV. In these plots, the y-axis values represent the NPS multiplied by the average incident x-ray fluence divided
by the square of the average signal in the noise images (i.e. qNPSo(u)/d 2 ). For the purpose of comparison, the
NPS curves at each angle were fitted to a fourth-order polynomial. For the incident x-ray energies and angles
presented in our study, the plots demonstrate the fact that the geometric effect does not affect noise. The reason
behind that assertion has to do with photoelectric interactions, which is the dominant x-ray interaction process
in amorphous selenium at the two energies. The geometric effect does not affect spatial correlations caused by
the re-absorption of K-fluorescent x rays because of the isotropic emission of these secondary x rays from the
atom. Once again, extrapolation to higher x-ray energies may not yield the same observation, since Compton
scatter interactions become dominant. Since Compton scatter x rays are not emitted isotropically, then spatial
correlations may possibly be introduced.

4.3. Detective Quantum Efficiency

Based on the Monte Carlo simulations for the modulation transfer function and noise power spectrum, the
detective quantum efficiency was calculated for each incident x-ray angle using Eqn. 7. Plots of the DQE for
each monoenergetic x-ray energy is shown in Fig. 5. Since the geometric effect does not alter the correlated or
uncorrelated noise components of the noise power spectrum, the behaviour of the DQE will solely be dictated
by the square of the MTF. Therefore, the DQE for a given incident x-ray angle can be approximated using the
DQE at normal x-ray incidence and the MTF due to the geometric effect (Eqn. 2) via

DQEo(u) ; DQE0o (u) x MTF ,o(U) (9)

Similarly, Eqn. 9 can be inserted into Eqn. 8 to yield a new expression for the detector performance oblique

degradation ratio, given by

ODRo(u) • MTF2 o(U) (10)
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Figure 5. Detective Quantum Efficiency due to obliquely incident x rays. Since the NPS is not affected by the incident
x-ray angle, then the DQE is solely determined by the square of the MTF.

5. DISCUSSION

To put the results from the DQE into context, we introduced a metric called the detector performance oblique

degradation ratio that describes the reduction in DQE caused by the geometric effect. Tihe ODR is shown

in Fig. 6 for a spatial-frequency of 10 cycles/mm, which approximately reflects the resolution required to see

micro-calcifications in the breast. As expected, the DQE fall-off is more dramatic for: (i) higher incident x-ray

angles, and (ii) higher energy x-ray beams, due to the greater penetration of the x-rays. These results suggest

that in the periphery of a mammogram (i.e. approximately 13 cm from the central axis to the chest wall in

any direction), the DQE falls to approximately 30% of the central DQE value. The implication for a radiologist

might be tihe diagnosis of a false positive or false negative in the front of the breast. Therefore, in the design

and development of x-ray detectors for mammography, manufacturers face an interesting compromise in terms of

maximizing image quality, due to the simultaneous need of maximizing x-ray intensity and minimizing incident

x-ray angle on the detector. As an example, for a chest wall to nipple distance of 13 cm and a source-to-detector

distance of 60 cm, the maximum incident x-ray angle that fully subtends the breast would be 12'. From Fig. 6,
the corresponding drop in DQE at 10 cycles would be approximately 30%. If the source-to-detector distance is

increased to 100 cm, the maximum incident x-ray angle is reduced to 7', which would lead to only a 15% drop

in DQE. However, tihe x-ray intensity will also fall by 36% due to the inverse square fall-off effect, thus requiring

a 36% increase in exposure time and tube heat load.

6. CONCLUSIONS

Oblique x rays reduce the MTF and DQE of x-ray detectors. At low spatial-frequencies (below 5 cycles/ram),
the geometric effect has a negligible effect on the spatial resolution. Above 5 cycles/mm, the loss of spatial

resolution is more pronounced and decreases with higher spatial-frequencies. In addition, the effect of obliquely

incident x rays on the modulation transfer function can be described analytically for the x-ray energies used in our

study. The noise power spectrum is unaffected by tihe geometric effect, and we show that the detective quantum
efficiency is reduced by a factor called tihe "oblique degradation ratio" given by ODRO(u) o( MTF 2,0 (u). For

tihe case of mammography, our results suggest that there is a large miss-match in detector performance between

the periphery of an image to the central region of the same image. The implication may impair the diagnosis

of breast cancer near the front of the skin line. Therefore, detector manufacturers face a practical compromise

between maximizing tihe x-ray intensity incident and minimizing the incident x-ray angle on the detector.
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Computational Engine for Development of
Complex Cascaded Models of Signal and

Noise in X-Ray Imaging Systems
Mike Sattarivand* and I. A. Cunningham

Abstract-The detective quantum efficiency (DQE) is generally measure of information content in an X-ray image that can de-
accepted as the primary metric of signal-to-noise performance in scribe the performance of human observers for particular detec-
medical X-ray imaging systems. Simple theoretical models of the tion tasks under certain idealized conditions [5], [7]. The de-
Wiener noise power spectrum (NPS) and DQE can be developed tective quantum efficiency (DQE) describes the ability of an
using a cascaded-systems approach to assess particular system
designs and establish operational benchmarks. However, the imaging system to make efficient use of incident quanta in terms
cascaded approach is often impractical for the development of of information content. It can be expressed as a function of
comprehensive models due to the complexity and extremely large one-dimensional (I-D) spatial frequency u as [3], [8]
number of algebraic terms that must be manipulated to describe F2(U)
signal and noise transfer. DQE(u) - - (1)

We have developed a computational engine that overcomes this qo NPS(u)
limitation. Using a predefined library of elementary physical pro- where qo is the mean number of X-ray quanta incident per unit
cesses, complex models are assembled and input-output relation-
ships established using a graphical interface. A novel recursive al- area on the detector, G = d/g0 is the system large-area gain
gorithm is described that allows the signal and noise analyses of factor and d1 is the corresponding average detector output signal

models with arbitrary complexity including the use of multiple par- [9]. The DQE has gained great practical merit as a measure
allel cascades. Symbolic mathematics is used to develop analytic of system performance, and describes squared signal-to-noise
expressions for the NPS and DQE. The algorithm is validated by ratio (SNR) transfer through the imaging system, DQE(u) =
manual calculation for simple models and by Monte Carlo calcu- SNRI2o(u'SNf 2

lation for complex models. We believe our approach enables the o 1 .1 0 (u), for X-ray imaging where the incident

use of complex cascaded models to design better detectors with im- quanta are Poisson distributed and, therefore, SNR? (u) = qo

proved image quality. [6], [10].

Index Terms-Cascaded models, detective quantum efficiency All Fourier-based methods, including the present work, as-
(DQE), modulation transfer function (MTF), Monte Carlo, noise sume linear and shift-invariant (LSI) imaging systems and wide-
power spectrum (NPS). sense stationary (WSS) or wide-sense cyclostationary (WSCS)

[9] random noise processes [11]. This limits these analyses to

I. INTRODUCTION noise in images with low contrast structures that are located in
regions distant from edge boundaries, generally in the center ofM EDICAL X-ray imaging systems must be designed to the image. Other limitations of Fourier methods have been dis-

achieve maximum image quality for specified radiation cussed by Barrett et al. [10].
dose to the patient. In the scientific and engineering commu- Early application of linear-systems theory, including the use
nity, image quality and system performance is quantified in the of MTF and related concepts in imaging science, was described
Fourier-based spatial-frequency domain using the modulation by Rossmann and co-workers [1], [2]. General works have
transfer function (MTF) [1], [2] to describe spatial resolution subsequently been published by Dainty and Shaw [8], Gaskill
and the Wiener noise power spectrum (NPS) to describe image [121, Papoulis [13], Doi, Rossmann, and Haus [14], Metz and
noise. Image signal-to-noise ratio (SNR) is quantified in terms Doi [15], and many others. Possibly the most extensive use of
of the noise-equivalent quanta (NEQ) [3]-[6], a fundamental linear-systems theory in the medical imaging field is the text by

Barrett and Swindell [16], who used this approach to describe
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t II. BACKGROUND: ELEMENTARY PROCESSES AND
00. CASCADED MODELS

Quantum
Inil ,Cascaded models of X-ray imaging systems describe how
k 4 4 R0 PathB quantum-based images are propagated through a system by

cascading simple "elementary" processes. A brief summary of
Val o these processes is required here to describe how they are used

Pathe in the present work.

f, T,(u) mr,, c=O Quantu-- A. Point Processes

A quantum image is a spatial distribution of quanta, generally
Fig. 1. Cascaded model of a Csl scintillator including reabsorption of . in two dimensions. Quanta have negligible size in this context
characteristic radiation. and are represented as point objects. A quantum image is, there-

fore, represented as the random point process d(r) consisting of
a spatial distribution of Dirac impulse functions [6], [9], [10],
[29]

gain and scattering processes is given by Rabbani et al. [20],
[21], and Barret et al. [10], [22]. These "elementary" processes
have well-defined signal and noise-transfer properties [6], 6(r) = 6(r - fi) (2)
[9], [20], [21], [23]-[25]. While a derivation of these transfer i=1
expressions is not given here, Table I in Appendix I summarizes
the important expressions for reference. Multiple processes can where N is a random variable describing the total number of
be cascaded to describe transfer of signal and noise in simple quanta in the image, ii is a random vector describing the spatial
models of system performance. The use of parallel cascades to position of the ith quantum and we use the overhead tilde (-)
describe noise transfer in quantum-based imaging systems was to indicate a random variable. The image td(r) can be character-
introduced by Yao and Cunningham [26] and is required when ized in terms of the mean number of quanta per unit area q and
two or more image-forming processes contribute to image by second order statistics including the autocovariance function
formation [27]. Collectively, these works have resulted in a K(r) in the spatial domain or Wiener noise spectrum NPS(u)
general description of image noise and a comprehensive frame- in the spatial-frequency domain. In this work we represent all
work to develop models of imaging-system performance. They spatial-frequency quantities in terms of the 1-D frequency u

are applicable for the description of any quantum-based linear for simplicity, although our results are easily extendible to two
imaging system, including X-ray and optical systems. Use of dimensions.
the DQE and (1) is valid only when the incident distribution of An imaging system is, thus, the random process connecting

input quanta are Poisson distributed which is always true for an input X-ray image do (r) to an output image d(r), made up of
X-ray imaging.[8], [10]. a cascade of a number of elementary processes including those

Fig. 1 illustrates one such model with three parallel cascades described here.

identified as paths A, B, and C. The model describes absorption 1) Quantum Gain: Quantum gain [10], [20]-[22] is a

of X-rays and production of light in a phosphor including the random point process in which each input quantum is replaced

effect of reabsorption of K,. characteristic radiation produced by J overlapping output quanta

by photoelectric interactions [26]. Path A describes light pro-
duction at the interaction location when no characteristic X-ray o.(r) = . 4in(r) = Z .j2 (r - ii) (3)
is produced. When a characteristic X-ray is produced, path B =1
describes light production at the interaction location and path
C describes light production at the reabsorption location when where . is an integer random variable with a mean value .0 and
reabsorption occurs. The role and functionality of each symbol standard deviation or. A graphical representation of this gain

in the model are described in Section II. process for a sparse 1-D quantum image is shown in Fig. 2. An
When cascading signal and noise expressions from one ele- example of quantum gain is the conversion of X-ray quanta to

mentary process to another, the number of terms grows quickly. optical quanta in a scintillator.
The model in Fig. 1 involves the manipulation of 38 terms for the The values of q', NPS and MTF are transferred according to
NPS while more comprehensive models may require the manip-
ulation of many hundreds of terms [28]. Even though much sim- qout = Win (4)

plification is generally possible, manipulating the large number MTFo,,,(u) = MTFin(u) (5)
of terms is tedious and prone to error, creating a serious limi- NPSo1ut(u) =. 2 NPSin(u) + 2- (6)
tation to the practical use of complex cascaded models for the g

optimal design of new X-ray detectors. In this article we de- The NPS in (6) consists of two terms. The first, .02 NPS 0in(U),

scribe a computational engine to remove this practical limitation describes transfer of noise by the mean gain .0 2 . The second
using an automated algorithm that works with parallel-cascade describes additional uncorrelated noise (independent of fre-
models of arbitrary complexity. quency) resulting from random variations in .•.
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Fig. 2. Each input quantum is replaced by n overlapping output quanta in a Fig. 3. In a selection process, each input point may appear in the output with
quantum gain process where t a is an integer random variable with mean .0 and a specified probability.

Note that the input to this process need not be a quantum
image--it can be a distribution of any type of point events.

2) Quantum Selection: Quantum sel ect ial case
ofquantum gain wherethegain & is a tBernoulli random variable
[wI] that can assume values of 0 or d only. Hence, 0 < a < 1 x

Fi g (1 -3 ). This process acts as a binary selection where
each input quantum is either passed to the output (probability is)
or not (probability 1 - rc)a a o

Tout(r) q in(r) img -- it(r -f (i)s (7)
i~l X

Signal and noise transfer through a quantum selection process
can, thus, be characterized solely in terms of T as summarized &t WT
in Table I of thecAppendix. Correlated noise, NoeSin(U)d) o in, iSi
passed with a gain of v2 while uncorrelated noise, iin, is passed
with a ga i of in.i

Fig. 3 shows the selection process for a sparse i -D input
quantum image. An example of the selection point process is P
the quantum efficiency of a radiographic screen. Fig. 4. Each input point is randomly relocated to a new position in the output

3) Quantum Scatter: Quantum scatter is a point process by by the scatter process. The relocation PDF is given by psf(er).

which each input point is randomly relocated to a new position.
Thus, for an input quantum image qin(r) from (2), we get an later) in its noise-transfer properties. The scatter process is il-

output quantum image lustrated in Fig. 4 for a t f-D quantum image.
I Transfer relationships are summarized in Table I. Note that

thte(r) 6(r- i- ij) (g) since the scatter operator neither loses nor creates quanta,
touetdsiqout = bn- In addition, correlated noise is passed through

where Aj• is a random vector with a probability distribution IT(u)JI while uncorrelated noise is not. Examples include the

function (PDF) given by the normalized point spread function scattering of optical quanta in a radiographic screen.

psf(r) that describes the misplacement of the ith quantum. The B.N n o tPrcse
output is expressed in short-hand notation as

4.,tr) dinr) . ps~r)(9) 1) Linear Filter: Linear filters, described in most textbooks
c~o•t~r -- qinr) * ps~r)(9)on Fourier theory, are used as elementary processes in which

where *,, represents the scatter operation [30]. While this scatter blurring at the output image is expressed by a convolution
will normally cause blurring of the transferred image by T(u), integral
the Fourier transform of the PSF, scatter differs from convolu-
tion used to describe the blurring of a linear filter (described do,t, (r) = dtin (r) * p(r) (10)
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where p(r) is the filter kernel. The mean output signal can be selection gain scatter
expressed as Iq (r)

q (r) -
In out

d~ut= T(O) qin(r) (11)

where T(u) is the filter characteristic function given by the
Fourier transform of the kernel and has a zero-frequency value

00

T(O) I J p(r)d2r. (12) Fig. 5. A simple cascaded model of a radiographic screen consists of quantum

-C0 selection, gain and scatter processes.

Transfer relationships are given in Table I. Note that unlike
quantum scatter, both correlated and uncorrelated noise corn- where the t superscript is used to indicate a discretely sam-

ponents are passed through IT(u) 12. The output NPS of a linear pled function represented as an infinite train of scaled and uni-

filter is, therefore, always band limited and does not have an un- formly-spaced 6 functions. When d 0n (x) is a detector presam-

correlated component. pling signal, the digital image consists of a set of the random

2) Quantum Integration: Many imaging detectors operate values j.
by producing an electrical signal proportional to the number of This sampling process is a linear operation although it re-

accumulated image quanta (such as electronic charge) in indi- sults in a shift-variant output. Fourier-based metrics are still ap-

vidual detector elements. This "binning" process is a spatial in- plicable since the output noise, even in the presence of noise

tegration of points that represent interacting quanta. If all quanta aliasing, is a WSCS random process. The shift variance can be

incident on an element of width a. are detected the number removed by sinc-interpolation, regardless of the relative posi-

of quanta interacting in the nth element of a detector array at tion of the sampling grid, only when there is no aliasing. The

x = nxo can be written as signal and noise transfer functions are summarized in Table I
for the case of no signal aliasing (the "presampling" signal).

dOlt,(x) = J in(T')dx' C. Cascading Elementary Processes
X -• Some X-ray imaging systems can be modeled by cascading

00 X -- I elementary processes where the output of one process becomes

4 / (X' II dx' (13) a virtual input to the next. For example, in a transparent radio-
I \ ax / graphic screen with a quantum efficiency 77, some incident X-ray
-00

where fl(x/ax) is a rectangular function having the value 1 for quanta are absorbed while others escape. This can be modeled
whereI(a /) < x<a,/2)tandgu elsewhere.ion cav n, thervaue1fore, as a random selection process with a mean probability a = r7.
-(ax/2) < i < (at/2) and 0 elsewhere. We can, therefore, Each interacting quantum is converted into a large number of
express integration as a convolution optical quanta, represented as a quantum-gain process. Subse-

* (a-''" (14)quently, light quanta are relocated randomly before they leave
o ) ) x ( the screen, a process which can be modeled as a quantum scat-

giving the value for an element centered at x for all x (physical tering process. Fig. 5 shows a cascaded model representing these

or not). Thus, quantum integration is a special case of a linear three stages. A two-dimensional (2-D) graphical representation

filter of sample input 4in (r) and output 4oi,t (r) are illustrated where
each point represents a quantum. Combining (3), (7), and (9),

T(u) = a~sinc(iraxu) - sin(iraxu) (15) the output quantum image can be expressed as
7rU 4qot(r) = [ &. 4in(r)] *, psf(r) (17)

where sinc function is defined as sinc(X) = sin(X)/X. where &, 4, and psf(r) represent the selection probability, gain
Quantum integration, therefore, changes an input quantum factor and light scattering distribution respectively. Since the
image to an output presampling (analog) image. Signal and input quantum image is Poisson distributed, NPSin(U) = Cin

noise relationships are provided in Table I. [101 and by applying signal and noise transfer for all processes
3) Sampling: Sampling of an analog image to produce a dis- from Table I, the output quantum image can be characterized as

crete digital image has been presented as an elementary process
in cascaded systems by a number of authors [9], [31]. We rep-
resent sampling as multiplication by an infinite train of uni- MTFo..t(u) = T(u) (19)
formly-spaced 6 functions at intervals of xo. Thus, for a 1-D NPSo,,t(u) = &i[.q2 + 'r2 - q] IT(u)12 + (20)
image, the output is

X . 00 D. Parallel Cascades of Elementary Processes
i,,(x)=din(X) X S 6(x - 7lXo,) In complex models where the imaging system cannot be rep-

00 resented as a single cascade of elementary processes, it is some-

y- djS(X - nxxo) (16) times necessary to use a number of parallel cascade paths to
n, =-0o represent multiple image-forming processes that are summed to
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% ar.)t(

elementary process(es) (r)

1 0 +
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Fig. 6. Schematic illustration of a quantum branch process creating two
parallel cascade paths that are summed to produce a single output image. N(r) N0

produce the output signal as illustrated in Fig. 6. Each path con- Fig. 7. A summation process with N. input cascade paths.

sists of arbitrary cascades of elementary point processes acting
on images qAo (r) and 413 (r) respectively, each of which con- where NPSA(U) and NPSB(U) are the NPS of images 4A(r)

sists of randomly selected points from din (r). The random vari- and w B (r) respectively and NPSAB (u ) is the cross spectral den-
ables 6• and /3 describe the selection of points for each path ad~ r epcieyadNSB()i h rs pcrldn

sity equal to the Fourier transform of the cross covariance of
(R 4A(r) and 4B (r). This term will be nonzero if & and ý are cor-

( - (21) related, i.e. if the cross correlation R,1 is nonzero.
4no(r) = /3 ttin(r) = E_ /3j 6(r - A general form of the cross spectral density NPSAB(U) fortwo point processes 4]A(r) and 4B(r) has been described re-

where &i and /3j can have values of 0 or 1 only. Therefore, the t pnt pocesses typ (r a n [6 ( e dribe d re-
"quantum branch" process in Fig. 6 acts as a two-way selection cently for this type of application [26]. We write it here in a

procss o tat a poitins A an B0form that differs slightly from the original asprocess so that at positions A0 and B30 r1

f qA0 = &T. in NPSAB(U) = PA(u)P( [NPSin(u) + (29)
qBo, = nm(22) I (/3)

(MTFA0 (U) MTFin(U) where NPSin(u) and qij, correspond to the NPS and mean den-

MTFB0 (u) = MTFIn(u) (23) sity at the input to the branch point, PA(u) and PB(u) are prod-

-, (U)=d2 [N \ - q +ucts of all mean gains and scatter characteristic functions in
SNPSBAo(U) = P2 [NPSin(u) - qin] + -in (24) paths A and B respectively (including the branch selection prob-

, NPS~s(U) -2 [NPSin(u) qin] +- /n- abilities & and /3), and K,, = R,3 - c/ is the cross covari-

For different input points in 4in(r) (that is i $ j), the random ance [11] of & and /. The asterisk in P (u) indicates the com-
variables &i and /3i are always independent. That is, selection plex conjugate. Note that this form differs slightly from the orig-
of any one point for path A or B has no influence on the selec- inal [26] so that factors PA(u) and PB(U) are the characteristic
tion of any other point. However, for any specified input point functions of paths A and B starting from the connecting branch
in 4in(r) (i = j), &i and /3j may simultaneously be zero (rep- point, respectively.
resenting a lost quantum, not entering either path) or unity (the This result is generalized for the summation of Na cascade
input quantum to the branch causes subsequent events in both paths as illustrated in Fig. 7, giving
paths). In general, ii and /3j are correlated random variables N.

with the cross correlation R,,,o qout = E 4. (30)

---= Efi/3}. (25) NazT., (u q=E MTFa (U) (31)
A properly designed model must necessarily satisfy any appli- MTFa=t(u) - =1 q•Mt
cable laws of conservation. For example, if one quantum enters N. N.

both paths in Fig. 6, the corresponding conversion gains in each NPSo,,t(u) = JNPSa(u)+ -Z -NPSab(U) (32)
path must collectively satisfy energy conservation laws. a=1 a ==1,

Signal-transfer expressions for the "summation" process in b°

Fig. 6 can be expressed as where a and b are indexes representing the cascade paths. The
second term in (32) indicates that cross terms between all pos-

qollt = QA" qB (26) sible pairs of paths must be considered using (29).

MTFo,,,(u) = - A MTFA(u)+ qB MTFB(u). (27)
qA + qB qA +q B III. THEORY

If A(r) and 4B(r) are statistically correlated, the cross spectral Our algorithm to calculate the signal and noise properties of
density of these random processes must be considered, giving complex cascaded models consists of three steps: 1) determine

NPS.,,t(u) = NPSA(U) + NPSB(U) + 2NPSAB(U) (28) transfer expressions for the mean signal, MTF and NPS for each
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~Elementary process(!!)

............, Nr.lenntary processIes):

a e o e n e i caos toihemoe
ountput. Vectors . .ad..areuse.totra....... ..

IncientI +S +N

spectral densi9. The distributive-over-addition property of elementary processes m

that the output from cascaded models (a) and (b) are equivalent for the same
inputs qA(r) and qn(r).

process; 2) convert the model into an equivalent model con-
sisting of only one summation process; and 3) cascade transfer

expressions for each process including cross spectral density having no nested cascades. This is made possible by noting
terms. The DQE is then determined using (1). that each of the point processes described above have signal

and noise transfer characteristics that are distributive over
A. Step 1: General Form of an Elementary Process addition, as described in Appendix II. This property allows us

Transfer relationships for the elementary (point and nonpoint) to move these processes across a summation point as illustrated
processes described above can be written in the general form of in Fig. 9. That is, the output image •o1 1t(r) has the same signal

and noise independent of whether the process acts on theSsoe t t fl(cir,Ph,P2,...) output of the summation 9(a) or on each of the inputs 9(b)

MTFou1t(U) =f2 (MTFin(u), .in,Pl,p2,...) (33) prior to summation. This principle is critical for enablingPotu)=f(N inuinPlP,.")gerizdaoihmoacmoaecmpxmdls ait

where .I represents a generalized image signal (.• = for appropriate application, each cascade path can be extended to
quantum images and .• = d for nonquantum images), fi1, f/2, a later position in the model. We choose to extend all paths to
anods nested arep anai fuctsionas a single multi-input summation point as illustrated in Fig. 8.

outut Vecor Sr andNalyti fusnc tac nomtionalsequiredP, for., the parame-

ters specific to each elementary process. A list of elementary This prevents nested loops and allows for simple application of
processes and their transfer relationships is given in Table I (28). The only requirement for use of these equivalent models

is that all elementary processes act independently on each pointB. Step 2: Equivalent Model in the images-a requirement already used in the development
of their transfer expressions. Note however that this argument

Cascaded models of real imaging systems can be very com- only appliesto moving prcsses across summation points
plex and contain multiple parallel cascades. While Fig. 1 illus- and that the relative positions of elementary processes cannot
trates a relatively simple model of a scintillator that describeso
reabsorption of K o E characteristic X-rays, more comprehensive is not equivalent to gain followed by scatter.

models currently under development [28] accommodate mul-
tiple characteristic radiations and scattering mechanisms and re- C. Ste 3: oca s Signal a Noisetin Eqint Models
quire multiple nested parallel cascades. Fig. 8(a) illustrates a
(hypothetical) example of nested cascades. The problem is that Cascading signal and noise involves applying (30)-(32) at the
we do not know how to interpret (29) for these complex models, summation point in the equivalent model and then cascading

We overcome this problem by converting each complex signal and noise to the output. The NPSa(U) terms at the sum-
model with nested parallel cascades into an equivalent model mation are obtained by applying the transfer functions from



SATI'ARIVAND AND CUNNINGHAM: COMPUTATIONAL ENGINE FOR DEVELOPMENT OF COMPLEX CASCADED MODELS 217

Table I as required for each process where selection of sub im- NPS(u); and, 3) ASCH-string representations of vectors S and
ages in branch points is a quantum selection process with prob- N required for the calculation of P(u) and N(u) for each cas-
ability a or 3. cade path as described later. Starting with the first process (nor-

Calculation of the cross terms is slightly more complicated. mally a "source" process that describes the Poisson distribution
We let m be a "process index" that labels processes along each of X-ray quanta incident on the imaging system), the Simulink
possible cascade path connecting the source (m = 0) to the final package passes the data structure from the output of the one
summation process (m = Nm 1, where N,, 1, is the number of process to the input of the next. In this way, the data structure is
processes along path "a"). We also let Tm (u) be the generalized passed throughout the model according to the connections be-
characteristic function for the mth process which may be a mean tween processes appropriate for the model. Feedback loops are
gain or a scatter transfer function. If we let m = K denote the not allowed for these models.
process index identifying the branch point linking process paths
a and b, the function Pa(u) can be written as B. Calculation of Signal and Noise Transfer

Nm Each process implements signal and noise transfer using the
Pa (u) -= H T. (u) (34) symbolic math package in Matlab [33] to operate on the input

M= a data structure according to specific rules summarized in Table I
where N,. is the number of processes along the cascade path and illustrated in Figs. 10 and 11. The algorithm follows the
including the linking branch. Similar expressions can be written inter-process connections in the original model but implements
for other paths. In addition, we make the further substitution signal and noise transfer as it would be passed through the equiv-

N(u) -- [NPS,_I(U) + 4. -1 ] alent model. This is achieved by providing for the passing of a
a(a.0.)L (35) compact data structure that can describe more than one image.

e N (u) ad q_1 For example, the summation "a + b" in Fig. 8(a) results in aweeNPS,._I(u) and ci,-1 are the NPS and mean density at .i

theinpt t th jonin brnch Eqatin (9),theefoe, e-two-image data structure being passed to branch point #3 in
the input to the joining branch. Equation (29), therefore, be- Fig. 8(a). By defining all summation points (except the final one)
comesto simply pass all input structures unchanged, and by allowing

NPSb(u) = Pa(u)Pb(U)Na(U)Nb(U). (36) for the processing of multiple data structures by each process,
signal and noise are effectively passed through the equivalent

For example, the cross term between cascade paths C and G model without additional coding.
linked through branch point #1 in Fig. 8(b) is Each process must also maintain the S and N vectors in the

/13 [ K, 1 ( data structure required to calculate the NPS cross terms in the
NPSCG(u) = d152 x31,33 X qj0 [1 + (aU01 )I x 1. (37) summation process according to (34)-(36). The vector S is a

Similarly for paths C and D connected through branch point #2 linear array of symbolic mathematics expressions for any spec-
SK,[ ,1_ ified cascade path. The number of elements in S increases with

NPSCD(U) = d2 X /203 x 1 + (a22) x 1. (38) each branch and the Ath element is the product of all process

The choice of which path is identified as the"a"characteristic functions starting from branch A to the process
as the "a" path is arbitrary. before branch A + 1

IV. IMPLEMENTATION b,\+l -1
SA = J Tm,(u) (39)

Implementation of the algorithm to calculate signal and noise \ H (3

transfer through the cascaded model is divided into two compo-

nents: A) a graphical environment for building the model; and where the value of b\+l - 1 cannot exceed the process index

B) a computational component to calculate the transfer of -, of the final summation. The P(u) values for any two paths are,

MTF, NPS, and DQE of the model system. therefore, given by

A. GUI Environment for Building Models Pa(U) = ft S,\ (40)

The graphical user interface (GUI) was developed to facili- A=b, Ia
tate the design of complex models using the software package where A = b, is the branch number linking the two paths and
Simulink in Matlab [32]. Each physical process is implemented NA\ is the number of branch processes along the path. The S
as an "S-Function" block and stored in a library of all processes. vector has NA, elements. The algorithm determines the value
Signal and noise transfer properties are implemented using pre- of A = b, by comparing entries in S for each cascade path.
compiled "mex" files. The user performs a drag-and-drop oper- Starting with A = 1, the first entry that differs corresponds to the
ation to select appropriate processes from the library, labels the branch process A = b,. For example, after branch point #1, S$
required parameters for each process as desired, and connects consists of the variables &I and i3z in the upper and lower paths
inputs and outputs together to build a model with the desired respectively, as illustrated in Fig. 8(b). This identifies A = 1 as
connection topology, the linking branch between paths C, D or E with F or G. The

Signal and noise at the input and output of each process is algorithm then uses (40) to calculate the P(u) value for each
described using a data structure consisting of: 1) a label indi- cascade path.
cating the image type, i.e., quantum or analog image; 2) ASCII The N vectors contain the N(u) terms for each branch point
strings for the symbolic math representation of 9, MTF(u), and but are too long to include in Fig. 8(b) and, thus, are represented
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transferred unchanged and the last row of the S vector is mul-
tiplied by the characteristic functions of these processes as (39)
requires. As mentioned earlier, a branch process adds a new row

- - - --------------- , ......... to S and N. The summation process will not change S and N
* Calculate output s and MTF based on vectors since the equivalent cascaded model has only one sum-

input s and MTF, and the parameters of the mation process where all NPS cross terms are calculated.
elementary process as in Table I of Appendix Simplification routines are called from within the mex files

Icof each elementary process after the algorithm calculates an-

If summation process; Calculate alytic expressions. This makes sure that the signal and noise
cross term NPSab, (see next flowchart) expressions are minimally simplified before being cascaded to

the next stage. Our reason for simplifying expressions as they

late output NPS based on input NPS are cascaded is to reduce the length of character strings used to

and cross term NPSab (as applicable) represent the expressions. Matlab has a 128-kbyte size limita-
tion on these strings. While this corresponds to an equation that

L------------- --- ------------------- --- would fill several pages of text, and this limitation has never

been reached in practice, it is prudent to simplify expressions
Modify input S and N vectors to create output whenever possible.

S and N vectors as in Table I of Appendix Information on the code used in this research can be obtained

at www.imaging.robarts.ca/-icunning/snrtk.

V. VALIDATION

The algorithm has been validated with manual calculations
Fig. 10. A general flowchart of an elementary process to calculate .• MTF, for simple models. However, this is impractical for complex
and NPS.

models and hence a special-purpose Monte Carlo (MC) code
described later was developed to generate MTF and NPS results
that are compared with analytic results. "Validation" here does

Start not mean underlying models are physically valid-it means only
that the models are evaluated correctly by the computationalS~engine.

Starting from the first non-common element,

multiply all elements of Sa and Sb A. Monte Carlo Validation

I In addition to propagating analytic expressions of signal and
Multiply previous product by the first noise, the mex files generate the necessary C source code to

non-common element of Na and Nb and put into NPS ab (U) perform a MC simulation of each physical process they repre-

sent. Thus, while the computational engine calculates signal and
noise expressions for an arbitrary model, it also generates a nu-
merical simulation of the same system. This guarantees consis-
tency between the analytic and MC calculations. Appropriate
choice of model design and parameter values enables valida-

Fig. 11. Flowchart to calculate NPS cross term between input paths a and b in tion of any complex model. The number of histories required in
summation process. MC simulations depends on the complexity of the model and is

chosen by trial and error.
by labels such as NA1 representing NA(u) from (35) evaluated Fig. 12 illustrates a MC simulation for a simple model con-
at the input of branch point #1. sisting of a single gain and scatter. Although the illustration

Figs. 10 and 11 illustrate a flowchart for the algorithm. After shows 2-D sample images, all MC calculations are performed
initialization, §,,,,t and MTFo,,t(u) are calculated using appro- using 1-D geometry to simplify the analysis and minimize the
priate equations from Table I. If the process is a summation, the number of MC histories required. Two sample images are gen-
NPS cross term is required as indicated by (32) and described erated in the simulation. The first describes the system response
later. Otherwise, NPS 5,t,(u) is only a function of NPSin(u) to a "point" source of incident X-rays at the center of the image.
and the parameters of the process. The dotted-line box of the This image is transferred by MC routines for each process to
flowchart shows calculations required for ,o,,t, MTFo1,t(u), and produce the output image that is the impulse response function
NPSo,,t (ui) expressions. The last step of the flowchart builds up (IRF) of the model. The MTF is the absolute value of the Fourier
the vectors S and N. For each process, S and N are modified, transform of the IRF, normalized to unity at u = 0.
based on (39) and (35), and passed to the output. Table I shows The second sample image describes the model response to
these modifications for each process. For gain, selection, scatter, a uniform Poisson distribution of incident X-rays. This image
charge integration, linear filter, and sampling processes, N is is separated into a large number of sub images and the sample
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Cascaded model NPS: Analytic(solid line) and MC (dot line)

Input image Output image 180l~00 1° '
140

0.4

0.2 M2 120

0.2 a4 0.6 0.6 1 002 4 0.6 06)
o_ 100z

0. ". 0'. •s" °8 80
0.0 0.6 Eq. 41 N P S

0.4 0.4 .. 60

0.2 02 g0 0" I•"• ' •40

0 00 02 M4 0.6 0.6 1 0 0.2 0.4 0.6 0.6 1

20 - . .

Fig. 12. Illustration of the MC calculation to determine output MTF and NPS. -0.5 0

The MTF is determined from a MC simulation of the point-spread function and -0.5e0/0.5

the NPS is determined from a simulation of the output image corresponding to cycles/bin

a uniform Poisson distribution of input quanta. Fig. 13. Validation of simple cascade with changes in mean gain value.

power spectrum after subtraction of the mean value is deter-
mined for each. The ensemble sample average is the image NPS: A

[9]
NPS(u) -- 2-9-E{IDFT{Ad }I2 (41) o.

where .x0 is the sample spacing, N. is the number of samples
for each sub-image and E{ } represents the expectation value. a b, Ob T(u) Q_Summ..ion

Once the NPS and MTF for the cascaded model are calculated, Fig. 14. A simple parallel-cascades model.
the DQE is determined. We show results for NPS calculations,
however similar agreement between MC and theoretical results

wereobtinedfortheM~h nd QE.C. Validation of Cross Spectral Density Termwere obtained for the MTF and DQE.

The ranO routine in [34] was used to generate uniformly dis- Fig. 14 shows an example of a simple parallel-cascades

tributed random numbers on a linux-based platform. The au- model. The upper path has only one gain process whereas the

thors claim that the number of random numbers that can be gen- lower path consists of selection, gain and scatter processes. The

erated without repetition is given by variable RANDMAX. For output NPS at point C can be expressed in the form of (28),

our compiler this number is 2 147 483 647, much greater than where NPSAB (u) is the cross spectral density between paths

the number used in this work. A and B at the summation point. This cross term is given by
(29), which for this model evaluates to

B. Validation of Simple Cascade NPSAB(U) = qi.n.a.bT(u). (43)

The simple cascaded model shown in Fig. 12 represents theconversio fp ut quanade todel cshown of Fig.12seondary anta. t MC and analytic results at points A, B, and C, as well as the NPSco nversion o f inp ut q uanta to clusters of seco nd ary quanta. c o st r ,a e c m a e n F g 5 o et a l t N S a o n
Using signal and noise transfer relationships listed in Table I, cross term, are compared in Fig. 15. Note that a flat NPS at pointthe analytic NPS for this model, validated by manual calcula- A is the result of no autocorrelation in the sample image at this
tion, is given by point. Equation (29) also indicates that the cross term depends

on the product of mean transfer functions along each path. Thus,
NPS(u) = (.0 + % _ ./) IT(u)12 ± n.in" (42) the form of the cross term is strongly model dependent.

By applying the MC method described above, the NPS of
the model is shown in Fig. 13 for 1.5 x 106 histories. The re- D. Validation of Simplified Photoelectric Model

sults show excellent agreement between MC and analytic NPS Fig. I shows a simple model of photoelectric interactions in

of (42), although the MC results are slightly below theory at a detector and represents the first published use of parallel cas-
spatial frequencies close to zero. This small discrepancy is be- cades [26], [27]. The analytic signal and noise expressions ob-
lieved to be a detrending artifact. This artifact is due to trunca- tained using the computational engine are
tion of sample images to a noninfinite extent. This affects zero
frequency regions in spatial-frequency domain that correspond qot o + qo•wdmb

to image data located at infinitely hight spatial values in spa- + qoWMt - to••WMa (44)

tial domain. We ignore this effect and expect to see it in all our MTFo,,t(u) = w~fkrmTk(u) + w(mnb + mcn - rnawc
MC results. Excellent agreement is maintained as the mean gain wrfkMc + WrMb + ma - maco

factor is increased from 10 to 12. x To(u) (45)
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NPS: Analytic(solid line) and MC (dot line)-

4500 NPSc process qc(r)

4000 q

3500 (a)
3000-
3000)S Elementary ch1(r)

qA~r ~ process
2000

1500 
2NPS a

1000 q.B(r) Elementary ýq#(r)process
5000 - NPSA -- "

5 ....
(b)

-0.5 0 0.5
cycles/bin Fig. 17. The elementary process in model (a) is distributed over the summation

to create model (b). The signal and noise expressions for image signal 4(c(r)

Fig. 15. Output NPS of image C contains a cross term NPS A 3 01). are the same as those of iiD (r).

NPS: Analytic(solid line) and MC (dot line) We developed a novel generalized automated algorithm to

500- perform analytic calculations of signal and noise propagation

450 through X-ray imaging systems. Fourier-based analyses are per-
formed to calculate metrics of image quality and system per-

400- formance in terms of MTF, NPS, and DQE. The implemented

350- recursive algorithm accommodates parallel cascaded models of
arbitrary complexity. This task is achieved by modifying com-300

S300plex models to an "equivalent model" based on the distributive-
S250 over-addition property of the elementary processes. A graphical
Z200- interface is used to build cascaded models in which complex

physical processes are represented as cascades of elementary
150 processes selected from a predefined library. Symbolic mathe-

100 matics is used to generate and simplify analytic expressions at
each stage of the calculations.

50A Analytic results generated by the algorithm have been vali-

-0.5 0 0.5 dated by manual calculations for simple models and special pur-
Freq. (cycles/bin) pose MC calculations for complex models. The MC validation

results includes the first validation of the use of parallel cascades
Fig. 16. MC and analytic NPS of the simplified photoelectric model. in inear-sste trsf thory.

in linear-systems transfer theory.
r,2-- Analytic descriptions of detector performance are particu-

NPSot(u) = [mnqotw.fk + 2mbfkmcqodwcTk(u) larly important for gaining insight into the physical causes of

brnot0w• + (1 - w ý)m~qod - q7ot] performance limitation. The algorithm described here is the first
x T2(u) + q.o..t (46) general solution of signal and noise transfer in complex systems.

Cascaded models are now becoming a practical tool for the op-where the parameters are identified in Fig. 1. tmldsg fnwiaigsses

The MC and analytic results are compared in Fig. 16 for 2.7 x

106 X-ray photon histories. Excellent agreement was obtained APPENDIX I
in all cases. SUMMARY OF SIGNAL AND NOISE-TRANSFER FUNCTIONS

VI. CONCLUSION A summary of signal and noise-transfer functions for the

The development of better X-ray detectors for improved dis- physical processes used in this article are summarized in

ease detection or reduced patient dose requires a comprehen- Table I. The "source" process describes a uniform Poisson

sive understanding of the relationship between the physics of distribution of X-ray quanta incident on the detector.

image-forming processes and quantitative measures of detector
performance. Recent works have resulted in the development of DISTRIBUTIVE-OVER-ADDITION PROPERTY OF ELEMENTARY
comprehensive transfer-theory approaches in cascaded models.
However, the need to manipulate large numbers of algebraic
terms in the cascaded approach has limited its practical useful- The algorithm described in this article to calculate signal and

ness for complex realistic models. noise transfer in complex cascaded models requires that each
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TABLE I
SUMMARY OF SIGNAL AND NOISE-TRANSFER FUNCTIONS FOR THE PROCESSES USED IN THIS STUDY

Elementary process mean MTF NPSout(U) Output S-vector Output N-vector

(icon-parameters) gain

Source -t _ q0  set NULL at source, set NULL at source.

ý0

Quantum 2  2- multiply last row of is the same as
gain g 9 input S-vector by g. input N-vector.

g , aY9

Quantum - 2 [S,(u)-q multiply last row of is the same as
selection 1 [N1 ~u)-qJ+aq,, input S-vector by U. input N-vector.

Quantum - - - multiply last row is the same as
scatter ') [NPSj(u) - qjT(u)[ + q,ý of input S-vector input N-vector.

T(u) by T(u).

s multiply last row of

Quantum sin(tau) NPS( sin taxu) input S-vector by is the same as
integration a a. itau " -W (iU) 2  a. sin(tau) input N-vector.

ax na ,u

Linear T(U) multiply last row is the same as
filteringin T(O ) NPS,(uýT(uA2  of input S-vector input N-vector.

T(O) T by T(u).T(u)

Sampling 1 1 is the same as is the same as
S1S,(u)+jAS(un) input S-vector. input N-vector.

1 -2 - -- add [ ) as a new row add NPS,(u)+(_l)q
Qa [NPS(u)-qjR+,qj, to the input S-vector. as a new row ap

Qua[tum to tto the input N-vector.
branch - --- add ý as a new row add unity as a new

" 1 NP(u) - q,] + qi to the input S-vector row to the input
N-vector.

qo,,= MTF.,,(u)= N N N

Summation 2 + "* (,u)+y u) is the same as is the same as
. N q.- W7u - --1 b=1 inputS-vector, input N-vector.Sa• qot a ipu -vctr

elementary point process (see Section II) be "distributive over qB) and q• = 9qA + .04B respectively. Since the gain process
addition." This property means that the position of these pro- defined in Section II is linear, qc = qo. A similar approach
cesses in a cascaded model can be moved relative to a "sum- using (27) can be used to show that the MTF at points C and D
mation" process without affecting signal or noise transfer prop- are equivalent.
erties of the model. A simple example of this property is illus- Using the gain noise-transfer expression in Table I, noise at
trated in Fig. 17 where an "elementary process" is moved from point C in Fig. 17(a) is given by
the output of a summation process to precede the two inputs. In NPSC(u) =2.02NPSC-(u) + 2qc,. (47)

this appendix, we show that the transfer characteristics of the

models in Fig. 17(a) and (b) are the same. By noting that dc, = 4A + qB and using (26) and (28), (47) can

We start by considering only a quantum gain process with be expressed as

gain mean .0 and variance a2. Under WSS conditions (mean and

autocorrelation of input quanta are uniform throughout image), NPSc(u) = •2 [NPSA(u) + NPSB(u)

the mean output signals qc and qD are given by qC = .l(qA + -2NPSAB(U)] + a'[A ± qB]. (48)
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For the model in Fig. 17(b), the output NPS can be expressed as [13] A. Papoulis, Systems and Transforms With Applications in Op-
tics. New York: McGraw-Hill, 1968.

NPS(U' = [- 2 NPSA(U) + O2A]2 [14] K. Doi, K. Rossmann, and A. G. Haus, "Image quality and patient
LYA exposure in diagnostic radiology," Photograph. Sci. Eng., vol. 21, pp.

+ [.q2 NPSB(U) + a 2 qB] + 2NPSA1B1(u). (49) 269-277, 1977.
115] C. E. Metz and K. Doi, "Transfer function analysis of radiographic

imaging systems" Phys. Med. Biol., vol. 24, pp. 1079-1106, 1979.Using (29) for the cross term in Fig. 17(b), NPSA[BI(u) = 116] H. H. Barrett and W. Swindell, Radiological Imaging-The Theory of
g0qNPSAB(U) = .q2NPSAB(u) and, therefore, NPSc(u) = Image Formation, Detection, and Processing. New York: Academic,

NPSD(U), which means that noise transfer in the two models 1981.

in Fig. 17 are equivalent. [17] W. Shockley and J. R. Pierce, "A theory of noise for electron multi-
pliers," in Proc. Inst. Radio. Eng., 1938.

Using a similar approach, it can be shown that the distribu- [18] L. Mandel, "Image fluctuations in cascade intensifiers," Br. J. Appl.

tive-over-addition property is valid for the other elementary Phys., vol. 10, pp. 233-234, 1959.

point processes plus the quantum branch process. [19] H. L. Zweig, "Detective quantum efficiency of photodetectors with some
amplifying mechanism," J. Opt. Soc. Am., vol. 55, pp. 525-528, 1965.

[20] P. L. Dillon, J. F. Hamilton, R. Shaw, and R. Van Metter, "Principles
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Image quality in diagnostic radiology is ultimately limited by statistical processes governing how,
and where, radiation energy is deposited in a detector. These properties in turn depend on the
physics of x-ray interactions. In the mammographic and radiographic x-ray energy range of 10-
100 keV, most of the energy deposited in a detector is through photoelectric interactions resulting
in local energy absorption plus the potential emission of a cascade of characteristic x rays and
Auger electrons. Reabsorption of characteristic x rays causes spatial correlations in the distribution
of absorbed energy. We describe a theoretical model of the photoelectric process that specifically
addresses the statistical nature of energy absorption through photoelectrons, multiple characteristic
x rays, and Auger electrons. A cascaded-systems approach is used that employs a complex structure
of parallel cascades. Analytic expressions are obtained for signal and noise propagation through
photoelectric interactions in detectors of a single atomic number in terms of the modulation transfer
function and Wiener noise power spectrum in the spatial-frequency domain. These results are
combined to describe the "photoelectric detective quantum efficiency" in terms of detector thickness,
mass density, atomic number and incident photon energy. Excellent agreement is obtained with a
Monte Carlo study for an amorphous selenium detector up to a spatial frequency of approximately
30 cy/mm at 60 keV and 13 cy/mm at 80 keV, limited only by electron transport physics for
photoelectrons and Auger electrons which are neglected in this model. This work provides a practical
tool for the evaluation of signal and noise transfer due to photoelectric interactions as part of an
evaluation of new or existing detector designs. Use of the cascaded approach makes it possible to
incorporate these results into more comprehensive models of specific detector designs, critical for
the development and evaluation of new high-performance detectors.

Keywords: x-ray physics, x-ray detectors, photoelectric interaction, characteristic x rays, Auger electrons,
cascaded models, modulation transfer function, noise power spectrum, detective quantum efficiency

I. INTRODUCTION controversial.12-1 4 Studies have shown that past improve-
ments to mammography detectors and instrumentation
have resulted in earlier detection 15 and it is generally

Radiographic image quality is in part a balance be- believed that if we are to continue to achieve earlier de-
tween system performance and radiation risk to the pa- tection rates and lower radiation exposures, we must per-
tient, and it is critical that the best possible image qual- severe to develop systems capable of even greater image
ity be obtained for a specified patient dose. This balance quality.
is particularly important for screening programs such as Fourier-based metrics such as the modulation trans-
mammography where large numbers of patients are ex- fer function (MTF),16-19 Wiener noise power spectrum
posed to radiation and high-quality images are essential (NPS), noise-equivalent number of quanta (NEQ) and
for the difficult diagnostic tasks of early detection when detective quantum efficiency (DQE)2" are generally ac-
disease is still in situ or minimally invasive.'-6 While cepted as primary measures of image quality and detec-
film-screen mammography has been the most reliable tor performance. 21 Fourier methods are normally appli-
method available for the detection of breast cancer in cable to linear (or at least linearizable) and shift-invariant
screening programs in the past, 7,8 it is hoped that their (LSI) systems where image noise is due to wide-sense sta-
limitations in sensitivity and specificity9 -11 will be over- tionary (WSS) 22 or wide-sense cyclostationary (WSCS)
come with new digital systems. This is particularly im- random processes. 23 This may sometimes limit Fourier
portant for examinations of the radiographically-dense methods to an analysis of central regions of images with
breast,",2 12 found more often in younger populations low-contrast structures. 24' 25 However, this is not neces-
where the benefits of screening mammography remain sarily restrictive as there is the implicit assumption that
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any imaging system optimized for these conditions will h^

be close to optimal for other conditions. While care must L

be taken to minimize additional artifacts due to use of photoelectron

the discrete Fourier transform,22 Fourier-based methods 'Auger

represent a practical balance between computational so- M(.• !v• Kccxray
phistication and general accessibility. L L x ray L x ray

Image noise in quantum-noise-limited x-ray imaging ,xray , yMAug

systems results from the statistical nature of quantum
interactions and spatial correlations associated with en- M L M4ML
ergy reabsorption in the detector. Photoelectric interac- N 0 A

tions are the primary mechanism by which x-ray energy
is deposited in a detector in the diagnostic energy range, M Auger L x ray M Auger M Auger

and due to the complex set of atomic electron transitions
and the potential production and reabsorption of mul- FIG. 1: Partial illustration of the possible transitions follow-
tiple characteristic (fluorescent) x rays, many complex ing a photoelectric interaction that involve K, L and M shells.
spatial correlations are introduced into the image signal. The result is a complex series of emitted photoelectrons, char-
The effect of reabsorption has been studied by a number acteristic x-ray photons and Auger electrons that introduces

of authors, including Chan, Doi, Boone, Zhao and co- spatial correlations in the distribution of absorbed energy.

workers 26-31 and others. Using Monte Carlo methods, it
has been shown that a significant fraction of total energy
absorption in the diagnostic energy range can be due to cle, we develop a comprehensive description of detector

reabsorption. performance by extending the use of cascaded-systems

While these studies highlighted the relative impor- theory to include complex parallel cascades. 40 In particu-

tance of reabsorption, the first statistical analysis was lar, we develop a description of photoelectric interactions

performed by Metz and Vyborny.32 They developed a using this approach resulting in a Fourier-based analytic

theoretical model of K x-ray reabsorption in a calcium description of signal and noise transfer associated with

tungstate screen (Dupont Par speed) and described the photoelectric interactions in x-ray detectors. This de-

resulting spatial correlations in terms of the statistical scription specifically addresses noise correlations that re-

covariance. They also described the first Fourier-based sult from the emission of characteristic radiation and the

result and showed that reabsorption caused a frequency- resulting impact on image quality in terms of the MTF,

dependent increase in image noise by up to 25%. Re- NPS, and DQE. Results can be computed with negligible

absorption in digital detectors using scintillating phos- computational effort and are validated by Monte Carlo

phors may be even more important as the optical sensors calculations for an amorphous selenium flat-panel detec-

are necessarily on the beam-exit side of the phosphor, tor.

unlike film-based systems in which film can be placed
on the beam-entrance side where most of the light is
generated.30 II. THEORY

Designing new detector systems optimized to produce
the best possible MTF and DQE requires a comprehen- A. Review of the photoelectric effect

sive understanding of how the physics of x-ray interac-
tions and energy absorption impacts on image quality The interaction of an x-ray photon with an atom by
in terms of these metrics. Monte Carlo (MC) meth- the photoelectric effect leaves the atom in an excited state
ods such as EGSnrc33- 35 can be used to simulate x-ray with ejection of a bound electron as a photoelectron. The
interactions and produce accurate models of particular excited atom then emits a complex cascade of character-
detectors. 28,30,36,37 However, our own experience shows istic x rays and Auger electrons. While this process is
that calculating the history of a single interacting x-ray described in many physics texts, 41' 42 a very brief sum-
photon requires approximately 1 ms on a fast PC (2.4- mary is required here to define terms as they are used in
GHz dual-CPU xeon processor running Linux) depend- this work.
ing on the photon energy, and the calculation of a single The photoelectric interaction is most likely to occur
DQE curve may require 108 histories requiring approxi- with an inner shell, but may occur with any shell when
mately 10 days of CPU time. Many such calculations are the x-ray photon energy hv is greater than or equal to
required to optimize a detector design and hence these the binding energy for that shell. For example, a K-shell
long calculation times can be prohibitive, interaction is possible when hv > EK and the photoelec-

Analytic models based on cascaded-systems theory 2' tron will have kinetic energy of hb - EK. The probability
have been used in the past to develop relatively simple of interaction with the K-shell is called the K participa-
models of detector DQE.31'38, 39 However, these models tion fraction, PI 1."
were generally too simplistic to have great practical value Figure 1 illustrates a series of energy transitions that
and therefore received limited enthusiasm. In this arti- may occur after an x-ray interacts with a K-shell electron.
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Three atomic shells (K, L and M) are shown although - .. .. * • ". S ..

the actual number depends on the atomic number of the ". . . * * . - ."
atom. Ejection of the photoelectron creates a vacancy • • * . •
that will be filled by an atomic electron from a higher '. * *.. "-. -
shell. If the resulting vacancy is filled by an L-shell elec- " • * * " -'; • . .""'. • o..• •"'. "* * "" .. * . ..

tron as shown in Fig. 1, the corresponding K-L transition * * . . .*... .. .. *..

will be accompanied by one of two possible events. In the -' " " . . . * .. 4. • :
first case, as shown in the left of Fig. 1, a KQ characteris- U . . * ...... , .. * • .
tic photon is emitted with energy equal to the difference e. * . "
between the binding energy of the shells, EK - EL. The * - . " 1. * "" " -

probability of this K, emission subsequent to the K-Lb . .. . . .. . " " "
transition is called the fluorescence yield, WKL. Emission 4 * • * . . * * .. . -

of the K, photon creates an L-shell vacancy that will be %. . . .- " " "
filled by an electron from the M (or higher) shell, result- . . ... _
ing in the emission of either an L characteristic photon . .. . ;.. ; * . . ""
or an M-shell Auger electron. % -•. " ""* , -. " ."

Alternatively, as shown in the right of Fig. 1, an L-shell .4.. :... -: * * - ... . .

Auger electron may remove energy equal to EK - 2EL (if
(EK - EL) ý EL) leaving two electron vacancies in the FIG. 2: Sample illustration of 4,(r) given by Eq. (1), a spa-
L shell. This results in one of three possible events as tial distribution of randomly located points where each point
shown in the lower right of Fig. 1. represents the location of a photoelectric event.

These internal transitions are repeated for the allowed
transitions until the inner-shell vacancy has been trans-
ferred to outer-shell vacancies that are filled by conduc- tric events in a detector (Fig. 2):
tion band electrons. While only the K-L transition is Np,,

illustrated in Fig. 1, others are possible. qo(r) = 63(r - ii), (1)

i=1

where Pi is a random vector describing the location in the

B. Cascaded model of the photoelectric effect image of the ith of NVp, photoelectric interactions. We use
the overhead tilde (-) to indicate a random variable. The
output is a random point process describing the spatial

The complex cascade of events following the photoelec- distribution of image-forming quanta liberated by energy
tric interaction creates many complex statistical spatial absorption in the detector.
correlations in where, and how, energy is transferred to An important assumption is made to simplify the anal-
the detector material with the subsequent liberation of ysis. We assume all energy transferred to electrons is ab-
what we will call "image-forming" quanta. These quanta sorbed locally. Thus, it is not necessary to describe the
will be of different types, such as light photons in a phos- random path of electrons and delta rays as they loose en-
phor or charge carriers in a photoconductor, depending ergy to the surrounding medium. This is valid only when
on the detector being described. While a statistical anal- R < 1/vmax where R is the electron range in the detector
ysis of the resulting image correlations is complex, much material and Vmnax is the highest spatial frequency of in-
of that complexity is concealed here using a modular ap- terest in the image. This is the primary limitation to the
proach to build the model by cascading simple processes results presented here and imposes a limiting condition
having well defined input-output relationships that de- on the maximum x-ray energy and spatial resolution for
scribe the first and second moment statistics required to which the model is applicable as discussed below.
determine the DQE. The only limitation to this approach It is also assumed that incident x rays are monoener-
as used here is to ensure that WSS conditions are satisfied getic although the results are easily generalized to polyen-
and each process in the model operates independently of ergetic beams with appropriate spectral averaging. In ad-
all others. These are not significant limitations but are dition, it is assumed that the detector material consists
discussed below, of a single atomic number. This is reasonable for detec-

Quantum-based imaging systems are well described in tors like selenium, but application to some multi-Z detec-
terms of random point processes as introduced to the tors may require additional thought due to more compli-
medical imaging community by Barrett, Wagner and cated characteristic photon emission-absorption relation-
Myers.22 ,43 A point process is a process for which all ships that is beyond the scope of this article. Finally, we
inputs and outputs consist of a distribution of points describe the release of image-forming quanta in the de-
that represent point objects or events. The input to our tector as the final end-point in our model and assume
model is qo(r), a spatial distribution of randomly located that the mean number released is proportional to the ab-
Dirac 6 functions representing the locations of photoelec- sorbed energy, Eabs, corresponding to a conversion gain
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of k = EabsIW where W is the work energy required on glecting the range of the electrons, liberation of image
average to liberate each image quantum. This ignores quanta is represented simply as a "quantum gain" 40 pro-
statistical variations in k and is reasonable when k > 1 cess, where electron energy is converted into many image
which is always true in this study. We also ignore the quanta. Thus, 4 (r) is a spatial distribution of points
practicality of how these quanta (such as light in a phos- identifying image-forming quanta liberated by K photo-
phor) might be collected by the detector, and scatter electrons. In this model, some points in 41(r) may over-
or absorption of these quanta. Detector electronic noise lap due to the liberation of multiple image quanta at each
and other engineering considerations that might prevent photoelectric interaction.
achieving the results described here are also neglected. In addition to the photoelectron, a fluorescent K pho-
Thus, our results are truly a description of fundamental ton may be emitted with probability WK (K fluorescence
signal and noise propagation through the photoelectric yield). For each K photon emitted, the second path de-
interaction itself. They are presented in terms of a cas- scribes liberation of image quanta due to its reabsorption,
caded model that could become one component of a more characterized by fK, the probability of reabsorption, and
comprehensive model for a specific detector that incor- CSFK(r), the probability density function (PDF) de-
porates some of the other issues identified here. scribing where the reabsorption may take place in the

The final form of the photoelectric interaction model image with respect to the emission location. In Fig. 3,
consists of a long algebraic equation. While the terms in random selection of K photons that are reabsorbed is a
the result are relatively simple, it is informative to first "quantum selection" process.4" The process of randomly
describe a simplified model (model "A") that considers locating where these photons are reabsorbed is repre-
only the emission of characteristic K photon fluorescent sented as a "quantum scatter" process,40 randomly relo-
radiation and then generalize it into a more comprehen- cating points according to CSFK(r). Thus, output from
sive result. The simpler model is easier to describe, and in the process labelled CSFK (r) is a spatial distribution of
fact may be entirely adequate for practical use when the points identifying reabsorption sites. At each such site,
distance travelled by low-energy L fluorescent radiation the K photon liberates gK1 = hVK/W image quanta,
can be neglected. The more comprehensive model (model giving 42 (r).
"B") is valid for a wider range of energies by specifically If a K photon is not emitted, energy is absorbed lo-
addressing K,, K,3 and L characteristic photons, and will cally through the ejection of an L-Auger electron and
be necessary for high atom-number detectors or detectors outer-shell transitions resulting in the liberation of gK2
designed for mammography or small-animal imaging (in- EK/W image quanta, giving 43(r).

volving lower energies and higher spatial resolution). In If the photoelectric interaction does not involve the K
general, the cascaded approach can be tailored to develop shell, it involves an outer shell (L or higher) and it is
models of any required complexity within the constraints assumed all energy is absorbed locally resulting in the
of the above assumptions. liberation of 9L = hv/W image quanta giving 4 4 (r).

Our simplified model of the photoelectric interaction il-
lustrated in Fig. 3 therefore consists of four different ran-

1. Model A

Our model of K emission is shown in Fig. 3 consisting TABLE I: Physical constants for a-Se used in this study. Se-
of four parallel cascades of point processes. Each box lenium data was obtained from Rowlands and Yorkston4 4 and
represents a particular (random) point process and each atomic data was obtained from Perkins et al.'5

connecting line represents a spatial distribution of points
connecting the output of one process to the input of the Mass density (p: g/cm3) 4.20

next. The input 4o(r) is a Poisson distribution of photo- Average work energy to liberate one

electric interaction locations. image-forming quantum (W: keV) 0.05
The first process encoufntered is a random process K-edge binding energy (EK: keV) 12.66

separating do(r) into two distributions corresponding to L-edge binding energy (EL: keV) 1.48
two different scenarios: i) those photoelectric interac- K0 -fluorescent energy (hvK<: keV) 11.21
tions that involve the K shell, with probability PK; and Kp-fluorescent energy (hv,<K: keV) 12.50
ii) those that involve an L or higher (indicated as L+) L-fluorescent energy (huL: keV) 1.416
shell, with probability (1- PK(). We have called this pro- 0.864
cess a "Bernoulli branch" 40 in which each input point is K-shell participation fraction (PK)
randomly assigned to one and only one of the two output L-shell participation fraction except K-shell (PL) 0.859

distributions. Probability of KL transition (CKL) 0.924

For each K-shell interaction, a K photoelectron is K-fluorescence yield in KL transition (WKL) 0.555
ejected with energy hy - EK that will result in 9K = K-fluorescence yield in KM transition (WKM) 0.965
(h1 - EK)/W liberated image quanta (labelled 41(r) in L-fluorescence yield in LM transition (WLM) 0.0176
Fig. 3) where W is the average work energy required to Probability of L-Auger electron production (aL) 0.764
liberate one image-forming quantum. Since we are ne-
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FIG. 3: Parallel-cascades model used to describe signal and noise transfer through photoelectric interactions in Model A. Each
object in the flow diagram represents a random point process operating on an input point distribution to produce an output
point distribution. The output from one process forms a virtual input to another as indicated by connecting arrows. Input
to the model is a distribution of photoelectric events 4o(r) and the output is a spatial distribution of liberated image-formingquanta 4_o,,(r). The energy associated with this conversion is indicated by dot sizes and is stated for each path.

domn point distributions identifying the locations of lib- 2. Model B

irated image-forming quanta. Collectively, they describe
the total distribution of image quanta resulting from pho- A more comprehensive model that specifically de-
toelectric interactions in terms of a number of random scribes image correlations resulting from both K and
variables. Distributions associated with the same parent L-shell interactions is illustrated in Fig. 4. While the
distribution may be correlated which is wily this theoret- greater variety of shells in this model gives rise to more
ical model is requiredi parallel pathways, model B is a natural extension of

Sec.tmodel A and the 18 paths collectively describe the re-

trabl i arid e s ionsfor t he podt oe all gainfctor sulting distribution of image-forming quanta liberated in

teralsong iated i n tes om ti ons, cal- the detector. It is evident that photoelectric events oc-

Whlae sot niatec essaily thes, mogdel a ndoise curring in the greater variety of atomic shells leads tocula ed y a prop iat ca cade of the sign l a d n ise greater opportunity for parallel events and im age cor-

transfer characteristics of each process as summarized in relations. Expressions for the various gain factors are
See. 11 C. Values of physical constants used are listed in summarized in Table dIb.Table I and expressions for tihe product of all gain factors
along each path are summarized in Table 11.

While not necessarily obvious, model A is equivalent 3. Fluorescence Reabsorption

to the model described in a previous publication. 40 In this section, details of reabsorption probabilities and
PDF functions are described. Reabsorption of fluores-

cent photons is characterized in the above description by
two terms: fi, the probability of reabsorption (anywhere)

TABLE II: Mean gain and MTF for each path in Model A. for a characteristic photon identified by transition i; and
CSFi(r), the PDF (or characteristic spread function) de-

Path Mean Gain (image quanta per PE event) MTF scribing the absorption probability density at location r
1 PK (hv - EK)/W 1 in the image with respect to the photoelectric interaction.

2 PK WK fK h--K/W RTFK(V) Both are functions of photon energy and the detector ma-

3 PK (1 - WK) EK/W 1 terial and geometry.

4 (1 - Pic) hv/W 1 We describe an analytic derivation of these two param-
eters similar to that of Metz and Vyborny,32 Que and
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FIG. 4: Model B describes transitions between K, L and M shells.

Rowlands 46 and others, although using a more formal dom variable •,and similarly for the other random vari-

theory of random processes.47 The calculation is illus- ables. This CSF is normalized such that the total prob-
trated in Fig. 5 for fluorescence reabsorption in an infi- ability of reabsorption f is equal to the two dimensional
nite homogeneous detector of thickness L. A normally integral of the corresponding CSF:
incident x ray interacts at depth z from the top surfaceo
emitting a fluorescent photon at polar angle 0 and az- f =_CSF(r)dr. (3)

imuthal angle 0. It is reabsorbed after travelling a dis- cc0
tance 1. These are all independent random processes, The CSF has a corresponding characteristic transfer
so we determine the CSF in terms of these variables, function (CTF) in the Fourier domain:
CSF(rJ0,l, 0, z), and then average over each as random CTF(v) = 171{CSF(r)l, (4)
variables:

and using the central ordinate theorem of the Fourier
CSF(r) = ((((CSF(rIO, l1 , z)0,)/)•)), (2) transform 48 gives

where the notion ( )ý represents an average over the ran- f = CTF(v)I,= 0 . (5)
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FIG. 5: Schematic illustration of fluorescence reabsorption in a screen. A normally incident x ray interacts at depth z. A
fluorescent photon is emitted at angle 0 and is reabsorbed at a distance 1. The projected reabsorption site into the image plane
may be at any point on a circle of radius r centered at the primary interaction site. (a) Cross-section view; (b) Image-plane
view.

In addition, it is convenient to define the normalized "re- eraging over 0 gives a two-dimensional ring 6 function:49

absorption transfer function" (RTF) as CSF(rI/, 0, z)

RTF(v) - CTF(v) (6) = j6(r( - 1 sin0sin¢)pr (O)dO
CTF(v)I=O' (60 sncs56r1

For specified values of 0, l, 0 and z, the CSF is simply = Ir 6(lr( - 1rsin0) (8)
a two-dimensional Dirac 6 function: IrI

where pr•)() = 1/(27r) is the PDF of ý. At this point it
CSF(rI¢, 1, 0, z) = 6 (r. - 1 sin 0 cos 0)6(r, - 1 sin 0 sin ) is more convenient to average over the remaining random

(7) variables in the Fourier domain. The Fourier transform
where r. and ry are the cartesian coordinates of r. Av- of a ring 6 function is the zero-order Bessel function. 48

Therefore,
CTF(v[I, 0, z) = .F {CSF(rjI, 0, z)} = J0(2irvl/sin 0). (9)

TABLE III: Mean gain and MTF for each path in Model B.

Averaging over 1 must be considered for the two cases of
Path Mean Gain (image quanta per PE event) MTFthe characteristic photon travelling in forward or back-

1 PK(hv - EK)/W 1 ward directions:
2 PK CKL WKLJKL(EK - EL)/W RTFKL(OFF(vI0, z)

3 PKIKLWKLWLMfLM(EL - EM)/W RTFLM(I) f(L-z)scc0

4 PK 6KLWKL (1 -- WLM)EL/W 1 CTFf(NvO,z) = / Jo(27rvlsinO)pri(1)dl
5 PK &KL(1 - WKL)aL(Ex - 2EL)/W 1 Jo

6 PK 'KL(1 - WKL)aL WLMfLM(EL - ENI)/W RTFLM(V) for 0 K 0 K (r/2
7 PK KL(1 -- WKL)aL(I - WLM)EL/W 1 f-0sc( 0

8 PK 6KL(1 - WKL)aL WLMfLM(EL - EM)/W RTFLM(v() -- Jo(2rvl sin 0)prJ(l)d1

9 PK .KL(l - WKL)aL(1 - WLM)EL/W 1 for 7r/2 < 0 < 7r,
10 PK •KL(1 -- WKL)(1 -- aL)(EK -- EL)/W 110 PK 6KL (1 - WK L) (1 - aL)WLEf(EL)- w /TF1 WL ere pri(l) = Mi(E) exp[-p(E)l] is the absorption PDF
11 PK ýKL (1-- WKL)(1 -- aL)WLMfLA (EL -- EM)/W R L, tang the x-ray path and p(E) is the linear attenuation
12 PK 6KL(1 - WKL)(1 - aL)(1 - WLM)EL/W 1 coefficient for the detector material at the energy E of
13 PK(1 - 6KL)WKMfKM(EK - EM)/W RTFKMtHq4'1 characteristic photon. These integrals do not have
14 PK(1 - ýKL)(1 - WKM)EK/W 1 simple solutions. Averaging over 0 gives
15 (1 - PK)P•(hIV - EL)/W 1 7r/2

16 (1 - PK)PL WLMfLM(EL - EM)/W RTFLA((v) CTF(vlz) j TFf(vJO, z)pr6(0)d0
17 (1 - PK)PL(1 -- WLAM)EL/W 1

18 (1 - PK)(1 P'L)hv/W 1 + CTFb(vI0, z)pr6(0)dO (11)
/2
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where pr(O() = sin 0/2 is the PDF for 9 after projection where qi is the mean number of image-forming quanta
into the two-dimensional image plane.47 For computa- per unit area liberated from the ith path, N is the num-
tional convenience, we make the substitution s = cos 0 ber of paths in the model and q. is the average number
so that Eq. (11) is reduced to of liberated image quanta per unit area in the detector.

10 The mean gain is a measure of overall signal transfer,
CTF(vlz) = - [CTFf(vls, z) + CTFb(VI - s, z)] ds sometimes called the "large-area" gain.

(12) The gain can also be written as(12)

where CTFf(vIs, z) and CTFb(VI - s, z) come from N

Eq. (10), giving GpeZg, (18)

CTFf(vls, z) i=1

sLl where gi is the product of all mean gain values along path
( L- / r 3 27rvll [ -- 1-s exp [-p(E)l] 413) i (connecting the output qi with the input 40). Expres-

sions for gi for each path are summarized in Table III.
and

CTFb(1 - S, Z) T 2. Modulation Transfer Function, MTF

( J0 exp -p(E)l] 41A) The MTF associated with photoelectric interactions is

The PDF pr2(z) describing the distribution of interaction equal to the weighted sum of the MTF of each path:

depths is given by N

p(-p,(hv) exp [-p(hv)z] (15) MTFPo(V) E Z i MTFi(v). (19)
prj(z) = 1 - exp [-p(hv)L] pc1 =1

where pp,(E) is the linear photoelectric interaction coef- Table III shows the MTF for each path of model C, ob-
ficient and hv is the incident x-ray energy. Finally, the tained by cascading appropriate combinations of the el-
CTF is obtained by averaging CTF(vlz) over i: ementary stages in each path.

CTF(v) = fCTF(vlz) prj(z)dz (16)
JO 3. Noise Power Spectrum, NPS

which can only be solved by numerical integration. The
CTF is circularly symmetric, and hence is expressed in The distribution of incident x rays is assumed un-
terms of the scalar frequency v. correlated and Poisson distributed with a mean q,

The parameters f and RTF(v) required for each tran- quanta/mm 2 and therefore the input NPS is given by
sition in the photoelectric model are then obtained using NPSo(v) = q_.22 The NPS associated with the distribu-
Eqs. (5) and (6). tion of image quanta liberated by photoelectric events

is obtained by cascading NPS transfer expressions along
each path, summing the results, and adding the necessary

C. Signal and Noise Transfer NPS cross terms between paths:

Signal and noise transfer through the photoelectric in- N N N

teraction is described here in terms of several parameters: NPSp (v) = ZNPSi (v) + E ENPSij (v). (20)
mean gain Gpo; modulation transfer function MTFp,(v) i=1 j=l
and noise power spectrum NPSp,(v). Transfer of these i

quantities is known for each process and are cascaded to The cross term has been described previously40' 50 and is
determine overall signal and noise transfer for the entire non-zero when correlations exist between the point dis-
model. tributions in different paths.

It is convenient for later use to define a normalized

1. Mean Gain, 0 NPS as

NNPS,,() =N]?Sý(v q0 NPSp!(v) (1
The mean gain GOp of the photoelectric process is the NNPSpq(L,) N (21)

average number of tertiaries produced per photoelectric
event, given by the sum of contributions from each path: which is the ratio of NPS p(V) to q. 2, the NPS that

N would be obtained with a noise-free conversion of x-ray

Ope- qs 1 i, (17) energy to image quanta with a gain of GOp and no scatter
qo qo i=1 or reabsorption.
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4. Detective Quantum Efficiency, DQE III. MODEL VALIDATION - MONTE CARLO
SIMULATIONS

The DQE describes the performance of an "ideal ob-
server" for the detection of low-contrast lesions under Our theoretical description of MTFpo(v), NPSpo(v)
specific conditions including wide-sense-stationary noise and DQEp,(v) was validated by Monte Carlo calculations
processes, 51 and can be defined as 52  for an amorphous selenium (a-Se) detector using the lat-

est version of the Electron Gamma Shower (EGSnrc)

DQE(v) = q°G MTF2 (v) (22) Monte Carlo code.33 '34 Only photoelectric interactions
NPS(v) were simulated. The user code DOSXYZnrc 35 was used

It has also gained popular use as a general parameter to simulate the coupled photon-electron transport within
describing transfer of the squared signal-to-noise ratio a rectangular slab geometry. Two-dimensional maps of
desc frib ing ut transf oftputh squae simaginal-ston e absorbed energy in the detector were calculated from the
(SNR) from input to output of an imaging system. We tredmninl"oedpsto as rdcdb
use the term "photoelectric DQE," DQEPo(v), in the lat- tredmninl"oedpsto as rdcdb
uersenthe todescrm be "p toelsfetric DQE," th e , id n theroat the Monte Carlo calculations by summing in the z direc-
ter sense to describe transfer of the squared SNR through tion. Two-dimensional "images" describing the number
the photoelectric process: of liberated image quanta in each pixel were generated

MTF2pc(V) by dividing the absorbed energy by the work energy W
DQEPC (v) -MPp(i) (23) of the detector. This ignores the random nature of gener-

NNPSP,(V) ~ ating tertiaries from absorbed energy, but is a reasonable

This would be the DQE of an imaging system in which approximation as the electron energies are much greater
incident x rays undergo photoelectric interactions only than W and a large number are generated with each in-
and all liberated image-forming quanta contribute to the teraction.
output signal with no other sources of signal degrada- The photoelectric MTF was generated by simulating
tion. It therefore represents the greatest DQE that any an infinitesimal pencil-beam of x rays incident on a 512-
x-ray imaging system can have in which x rays interact pim x 512-pm slab (1-pm square pixels) using 107 plio-
by the photoelectric process, and is interpreted as a fun- ton histories. The resulting dose-deposition map gives
damental measure of information transfer through the the total absorbed energy in each pixel. The distri-
photoelectric effect. bution of liberated image quanta, once projected on

to the image plane and normalized to unity volume,
represents the two-dimensional point spread function.

D. Signal and Noise Transfer Calculation The one-dimensional MTF was calculated from the two-
dimensional Fourier transform of the PSF.

Analytic expressions for the MTF, NPS and DQE of The photoelectric NPS was generated by simulating
each model can be calculated by a somewhat tedious pro- a series of ten fiat-field noise images with a parallel x-
cess of appropriately cascading expressions of signal and ray beam of 8 x 107 incident photon histories per im-
noise transfer. For model A, the photoelectric MTF, NPS age over an area of 2 x 2 cm 2 (1-yrm pixel size). This
and DQE are given by calculation took approximately 20-40 minutes per image

(depending on incident photon energy) for the case with-
MTFp(v,) = hv - PKWKhVK (1 - fKRTFK(V)) (24) out electron transport and 5-21 hours per image with

hb - PKWKhVK [1 - fK] ' electron transport, using a 2.4 GHz dual-Xeon processor
running Linux. Boundary effects from the Monte Carlo

1 2simulation were avoided by ignoring 200 pixels (repre-
NNPSP0 (V) = G2 f [(hV - EVK)/W + (hv - FIV')/Wýstki 0.2 mm) from each edge of the image. Each of

NNP(72 = Gthe final noise images had 1800 x 1800 data points that

+ (h-4(./W2 + h-K/W)fKPK WK were subdivided into 81 sub-images, each with 200 x 200

"+ (hV2/W 2 + hv/W)(1 - PKWK) data points, resulting in a total of 810 sub-images. The
+ 2h- hone-dimensional power spectrum in the x direction was

"+2( - 71'Kh WhvKWfKPK WK RTF(v)}J(25) calculated for each of the 810 sub images and averaged
to give the NPS:23

where Gpo = [hV-PKwKhV-g(1-fK)1/W, W is the work
energy and DQEP, is given by Eq. (23). N(- 2

For the more complex models B and C, this calculation _was automated using a recently published algorithm.s° NPS(v) = NxoNyoE D E A,,

The algorithm uses the Simulink graphical user interface X, n, =o

capability of Matlab5 3 to design the cascaded model and (26)
symbolic mathematics to calculate analytic expressions where x0 and Yo are the pixel center-to-center spacings
of signal and noise transfer. Expressions for the MTF in the x and y directions, Nx and Ny are the sub-image
and NPS involve many terms and are listed in Appendix dimensions, E{ } and DFT{ } represent the expecta-
A. tion and discrete Fourier transform (DFT) operators, and
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FIG. 6: The reabsorption transfer function (RTF) for K. FIG. 7: Excellent agreement is achieved between the MTF
reabsorption in semi-infinite a-Se. obtained with the analytic Model B and the Monte Carlo

simulations when the effect of electron transport is ignored.

is the zero-mean realization of the dose deposi- 1.2
tion at the location of pixel (nx, ny). Selection of the x di-
rection is arbitrary as the NPS is equivalent in the x and y -12 ke
directions. Equation (26) is equivalent to the "synthesis" . -

method used for multi-dimensional NPS calculations 54 in --S~~~40 keY --

which pixel values are summed in the y direction before U. 0.8
..13 keY

taking the 1-D Fourier transform. Once MTFpo(v) and ,
NPSp,(v) were determined from the Monte Carlo simu- . 0.6
lations, DQEpo(v) was calculated using Eq. (23). a-Se detector 80 keV

A semi-infinite detector thickness was assumed for all p p = 4.20 g/cm3

calculations. This removes the detector thickness L from 0.4 L=oo
the calculation and means that our results represent a 0
pessimistic estimate of MTFPC. However, our experience 2 0.2 - analytic results ]

with the Monte Carlo calculations also showed that the - - MC results with electron transport

MTF and NPS have very little dependence on L if the 0
thickness is great enough to achieve a quantum efficiency 0 5 10 15 20 25 30

of 0.25. It is therefore reasonable to conclude that the Spatial Frequency (cycles/mm)

MC results obtained with the semi-infinite detector are FIG. 8: Comparison of MTF from Model B with Monte Carlo
representative of a-Se detectors currently in use. simulations including electron transport. At 80 keV, electrons

have an average CSDA range of RcSDA = 0.039 mm in Se,
resulting in significant degradation of the MTF at frequencies

IV. RESULTS above approximately 13 cycles/mm (c- 1/(2RcSDA)).

The reabsorption transfer function RTFKL (V) is shown
in Fig. 6 for incident photon energies of 13, 20, 40, 60 and 12 keV (below the K edge), the MTF is close to unity
80 keV. While there is some reduction in the RTF with for all frequencies. At 13 keV, the MTF is degraded by
increasing incident energy due to increases in the average over 25% at frequencies greater than approximately 8 cy-
interaction depth, this dependence is surprisingly minor. cles/mm due to reabsorption of characteristic radiation.

Figure 7 shows a comparison of MTFpC (v) obtained us- The effect of reabsorption decreases with increasing en-
ing model B with Monte Carlo results for a-Se for a range ergy.
of incident x-ray energies with the assumption that all Electron transport causes an additional spread in
energy transferred to electrons is absorbed locally. This where energy is deposited in the detector by a distance of
was achieved with the Monte Carlo code by specifying an approximately RCSDA (continuous slowing down approx-
electron transport cut-off energy greater than that of the imation range) in either direction, resulting in a further
incident x ray. In all cases, excellent agreement (within degradation of the MTF. This effect is shown in Fig. 8
2%) is obtained between the analytic and MC results up where MC results with electron transport enabled (using
to 30 cycles/amm between energies of 12 and 80 keV. At an electron cut-off energy of 10 keV) are compared to
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results obtained with electron transport disabled. Elec- 1.4
tron transport degrades the MTF by more than approx-
imately 10% only at frequencies greater than approxi- 1.2- 13 keV

mately 1/(2RcsDA) = 12.7 cy/mm as summarized in Ta-
ble IV for a-Se. This effect imposes a tradeoff between U) 1 °-.:

photon energy and spatial resolution for a specified de- a-0

tector material and determines the limiting range of ap- v 0.8( a-Se detector
plicability of the models presented here. L4 a

The photoelectric NPS, NPSp,(v), is compared with 0 0.6 - = 4.20 g/cm

MC calculations without electron transport in Fig. 9, z0

showing excellent agreement at incident photon energies 0.4 - analytic results
between 12 and 80 keV. When electron transport is in- 0

cluded in the MC calculation, shown in Fig. 10, the NPS 0.2 - MC results without electron transport
X

falls below that of the analytic model at frequencies above
approximately 1/( 2 RcSDA), similar to the MTF results. 0

0 5 10 15 20 25 30
Figure 11 shows excellent agreement between the an- Spatial Frequency (cycles/mm)

alytic DQEpo(v) and MC simulations without electron (a)

transport for a-Se at incident energies of 13 to 80 keV.
A comparison of the DQE at 12 and 13 keV shows that
just above the K edge, reabsorption degrades the zero- 1.2
frequency value by approximately 15% and at frequencies
above 13 cycles/mm by 50%. The effect of reabsorption
decreases with increasing energy. U 1

When electron transport is included in the MC calcu- Z-o0.8-
lations (Fig. 12), agreement is excellent between 12 and 0.
40 keV and again degraded at 80 keV by approximately t-

10% at frequency 1/2RCSDA due to degradations in both 0.6 a-Se3detector
8 p = 4.20 g/cm3

the MTF and NPS curves. z
All results presented here for the Se detector were ob-

tained using model B and are almost equivalent to results __analytic results__
obtained using model A. Thus, model A is sufficiently 0.2 MC results without electron transport

accurate to describe the Se detector over the energy and 0
spatial frequency ranges described. However, model B 0 5 10 15 20 25 30
would be required for detector materials having greater Spatial Frequency (cycles/mm)
atomic number where the range of K,3 or L radiations (b)
cannot be neglected.

FIG. 9: Excellent agreement is obtained between the NPS
from Model B and the Monte Carlo simulations ignoring elec-

V. CONCLUSIONS tron transport in a-Se.

A Fourier-based description of photoelectric interac-
tions in diagnostic-imaging detectors has been developed systems approach. Two models are described with in-
to describe signal and noise transfer in terms of the pho- creasing levels of sophistication. The first includes the
toelectric MTF, NPS and DQE using a linear cascaded- potential reabsorption of K characteristic x rays only.

The second makes a distinction between K,, K,3 and
L characteristic x rays. Both make use of parallel cas-

TABLE IV: Electron CSDA range in a-Se (p = 4.2 g/cm3). cades of random noise processes to describe the result-
Electron transport only degrades the MTF significantly at ing statistical correlations in image noise. The first is
spatial frequencies above approximately 1/(2RCSDA). relatively simple and the analysis can be performed us-

Electron Energy (keV) RcSDA RCSDA 1/(2RcSDA) ing a relatively simple manual calculation of signal and
EetronEnery(keV) CA (D 1(2 A) noise transfer. The second requires extensive use of par-
(keV) (g/cm2 ) (mm) (m10-) allel cascades and represents the first published models

20 1.587 x 10- 3.78 x i0- 132 using such a complex parallel-cascades analysis. Signal

40 5.129 x 10-3 1.22 x 10-2 41 and noise transfer through it is more complex requir-

60 1.019 x 10-2 2.43 x 10-2 21 ing the tedious manipulation of many (30 - 50) algebraic

80 1.651 x 10-2 3.93 x 10-2 13 terms even with simplifications. For this model, signal

100 2.391 X 10-2 5.69 x 10-2 8.8 and noise transfer was calculated using an automated
software algorithm developed in our laboratory using a
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FIG. 10: The NPS obtained with Monte Carlo calculations FIG. 11: Excellent agreement is obtained between analytic
for 80 keV deviate from the analytic model at approximately DQE and MC DQE when electron transport is neglected.
17 cycles/mm (1/2RcSDA) due to electron transport in a-Se.

x ray. This limiting frequency decreases with increas-

graphical user interface to design the model and symbolic ing x-ray energy. In the Se detector, Vnax 21 cy/mmn

mathematics to evaluate signal and noise propagation. 50  at 60 keV and 13 cy/mm at 80 keV. The relationship

Blurring due to electron transport is not included in Vmax • 1/( 2 RCsDA) was only verified for the Se detec-

these models. The photoelectric MTF, NPS and DQE re- tor, but it is reasonable to expect it will be valid for other

sults were validated using a Monte Carlo calculation with detector materials.

electron transport calculations disabled showing agree- While the expressions for MTF, NPS and DQE ob-
ment with the model within approximately 2% up to tained with these models may involve many algebraic
30 cycles/mm for an amorphous selenium detector. This terms, they are easy to evaluate. Thus, it is practical to
verifies that the analytic model is extremely accurate for evaluate these metrics for a wide range of detector config-
the calculation of all photon-based physical processes in urations with negligible computational requirements. In
the photoelectric interaction. The MC calculation was addition to reducing the need for extensive Monte Carlo
repeated with electron transport calculation enabled to' calculations, the analytic models provide more insight
identify the range over which the model can be expected into the physical causes limiting detector performance.
to be accurate. It was found that the model is accurate Use of the cascaded-systems approach makes it easy to
within 10% for spatial frequencies up to a maximum spa- incorporate these results as the first stage of more com-
tial frequency v'max "• 1/( 2 RcsDA) where RCSDA is the prehensive models of specific detector designs for the de-
CSDA range of electrons at the energy of the incident velopment and evaluation of new detector systems with
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FIG. 12: Comparison of DQE from model B with Monte Carlo
simulations including electron transport for a-Se.

greater performance specifications.
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APPENDIX A: PHOTOELECTRIC MTF AND NNPSpo(v) = { [(bv - EK) 2 /W 2 + (hv - EK)/W] PK
NNPS OF MODEL B C

" [(EK - EL) 2 /W 2 + (EK - EL)/W] fKL WKL ýKLPK

"-[(EL - EM)2 /W 2 + (EL - EM)/W] fLM ILM WKL AKL

+ (E2/W 2 + EL/W)(1 - WLM)WKL &KLPK
Expressions for the photoelectric MTF and NNPS ob- + [(EK - 2EL)2/W2 + (EK - 2EL)/W] aL(1-WKL)KLF

tained with model B were calculated using an automated )2 /W 2 +
algorithm employing symbolic mathematics developed in +2 [(EL - EM) 2/W 2 + (EL - EM)/W] fLM WLM aL(1-Ut
our laboratory50 and are listed here for reference. +2(E2/W 2+EL/W)(1-WLM)aL(1-WKL)&KLPK

+[(EK - EL) 2 /W 2 + (EK - EL)/W] (1-aL)(1-WKL)ýK.

+[(EL - EM) 2/W 2 + (EL - EM)/W] fLMWLM(1-aL)(1

+(E2 /W 2+EL/W)(1-WLM)(1-aL)(1-WKL)6KLPK

+ [(EK - EM) 2 /W 2 + (EK - EM)/W] fKM WKM(1-6-KL

+ (E 2/W
2 + EK/W)(1 - WKM)(1 - 6KL)PK

+[(hv - EL) 2/W 2 + (hv - EL)/W] PL(1-PK)

1 +[(EL - EM) 2/W 2 + (EL - EM)/W] fLMWLMPL(1-PA
MTFpo(V) = -- {PK(hv - EK)/W + PK&KL WKLfKL RTFKL(v)(EK - + EL/W)(1 - WLM)P(1 -- PK)

(Gpe L +E/)1-WMP~ K

PK&KL WKL WLMfLM RTFLM(V)(EL - EM)/W + PKýKL WKL(1 -- ZPL(ME/LY+ hv/W)(1 - PL)(1 - PK)

"+ PK6KL(1 - WKL)aL(EK - 2EL)/W +2(hv-EK)/W(EK-EL)/WfKL WKL 6KLPK RTFKL(V)

"+ 2PK&KL(1 - WKL)aL WLMfLM RTFLAI(v)(EL - EM)/W +2(hv-EK)/W(EL-EM)/WfLM WLM WIKL 6KLPK RTF,

"+ 2PK6KL(1 - WKL)aL(1 - WLM)EL/W + PKKL(1 - WKL)(1 - aL)fih2-E•/•W(EL/W)(1-WLM)WKL ýKLPK

"± PK6KL(1 - WKL)(1 - aL)wLLMfLM RTFLM(V)(EL - EM)/W +2(hv-EK)/W(EK-2EL)/WaL(1-WKL)6KLPK

"+ PK6KL(l - wKL)(1 - aL)(1 - WLM)EL/W +4(hv--EK)/W(EL-EM)/WfLM WLM aL(1-WKL)6KLP

"+ PK(1 - 6KL) WKMfKM RTFKM(v)(EK - EM)/W +4(hv-EK)/W(EL/W)(1--WLM)aL(1-WKL)ýKLPK

"+ PK(1 - &KL)(1 - WKM)EK/W + (1 - PK)PC (hv - EL)/W +2(hv-EK)/W(EK-EL)/W(1-aL)(1-WKL)ýKLPK

+ (1 - PK)PL WLMfLM RTFLM(v)(EL - EM)/W +2(hv-EK)/W(EL-EM)/WfLM WLM(1-aL)(1-WKL)ý,

+ (1 - PK)PL(1 - WLM)EL/W + (1 - PK)(1 - PL) hv/W} +2 (hiv--EW•(EL/W)(1-WLM)(1-aL)(1-WKL)ýKLPA
+2(hv--EK)/W(EK--EM)/WfKM WKM(1--KL)PK RTF

Gpo = PK(hv - EK)/W + PK&KL WKLfKL(EK - EL)/W

+ PK6KL WKL WLMfLM(EL - EM)/W + PK&KL WKL(1 - WLM)EL/W

"+ PK&KL(1 - WKL)aL(EK - 2EL)/W + 2 PKIL(l - WKL)aL WLMJLM(EL - EM)/W
"+ 2 PKKL(1 - WKL)aL(1 - WLM)EL/W + PK&KL(1 - WKL)(1 - aL)(EK - EL)/W

"+ PK6KL(l - WKL)(1 - aL)WLMfLM(EL - EM)/W
"+ PK&KL(1 - WKL)(1 - aL)(1 - WLML)EL/W + PK(1 -- KL)WKA•fKM(EK - EM)/W
"+ PK(1 - &KL)(1 - WKM)EK/W + (1 - PK)PL(hv - EL)/W

"+ (1 - PK)PL WLMILM(EL - EM)/W

"+ (1 - PK)PL(1 - WLM)EL/W + (1 - PK)(1 - PL) hv/W (A2)
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+2(hv-EK)/W(EK/W)(1-WKM)(1--KL)PK

+2(EK--EL)/WfKL(EL-EM)/WfLM WLM WKLýKLPK RTFKL(v)RTFLM(V)

+2(EK-EL)/WfKL(EL/W)(1-WLM)WKL ýKLPK RTFKL(V)

+2(EK-2EL)/W(EL--EM)/WfLM -'LM aL(1--wKL).KLPK RTFLM(V)

+2(EK-2EL)/W(EL/W)(1-WLM)aL(1-WKL)ýKLPK

+2(EK--2EL)/W(EL--EM)/WfLM WLM aL(1--WKL)ýKLPK RTFLM (V')

±2(EK--2EL)/W(EL/W)(1-WLM)aL(1-WKL)ýKLPK

+2 [(EL - EM)/WfLM WLLM RTFLM (V)]2 aL(1-WKL)ýKLPK

+4(EL-EM)/W(EL/W)fLM WLM(1-WLM)aL(1-WKL)ýKLPK RTFLM(V)

+ 2(EL/W) 2
(1 - WLM)2 aL(1 - WKL)ýKLPK

+2(EK-EL)/W(EL-EM)/WfLM WLM(1-aL)(1-WKL)ýKLPK RTFLM(V)

+2(EK-EL)/W(EL/W)(1-WLM)(1-aL)(1-WKL)ýKLPK

+2(hv-EL)/W(EL--EM)/WfLM WLMPL (1--PK)RTFLM(V)

+2(hv-EL)/W(EL/W)(1-WLM)PL(1-PK) }
(A3)
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